Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Nanosci Nanotechnol ; 12(7): 5658-62, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22966628

RESUMO

The fabrication of graphene has been widely studied and chemical reduction is considered the most suitable approach to achieve large-scale production and graphene functionalization due to its versatility of chemical routes. We report here a fast and simple reduction of graphene oxide in various organic solvents using microwave irradiation. The reduction can be completed in several minutes, and the oxygen content and conductivity (10,000 S/m) of the reduced graphene oxide were comparable to the previously reported results which reported between 1 hr and 24 hrs for the reduction. We also found that an amide group containing a solvent like NMP or DMF reduced graphene oxide (GO) more effectively than did other solvents. Further, free radicals generated from NMP significantly enhanced deoxygenation of graphene oxide. Moreover, this approach is a non-toxic and environmentally-friendly method to obtain highly conductive reduced GO for a wide range of applications including graphene-based composites, batteries, and electrodes for super-capacitors.

2.
J Nanosci Nanotechnol ; 12(4): 3313-6, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849114

RESUMO

We report a facile solution-based method for the controlled growth of ZnO nanomaterials on an AIN/Si substrate. A ZnO buffer layer was coated on the substrate before growing the ZnO nano-materials. The shape of the ZnO nanomaterials changed from nanosheet to nanorod as the thickness of the ZnO buffer layer increased. Doping of the buffer layer with Ga decreased the average grain size of the ZnO buffer layer, which resulted in the growth of longer and thinner ZnO nanorods on the buffer layer. The UV sensing results of the ZnO nanorod-based device revealed that the aspect ratio of the ZnO nanorods is crucial for enhancing the performance of the device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA