Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Transl Allergy ; 13(4): e12242, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37186425

RESUMO

BACKGROUND: Allergic rhinitis includes a certain degree of autonomic imbalance. However, no information is available on how daily changes in allergy burden affect autonomic imbalance. We aimed to estimate associations between daily allergy burden (allergy symptoms and mood) and daily heart rate characteristics (resting heart rate and sample entropy, both biomarkers of autonomic balance) of adults with allergic rhinitis, based on real-world measurements with a wearable telemonitoring system. METHODS: Adults with a tree pollen allergy used a smartphone application to self-report daily allergy symptoms (score 0-44) and mood (score 0-4), and a Mio Alpha 2 wristwatch to collect heart rate characteristics during two pollen seasons of hazel, alder and birch in Belgium. Associations between daily allergy burden and heart rate characteristics were estimated using linear mixed effects distributed lag models with a random intercept for individuals and adjusted for potential confounders. RESULTS: Analyses included 2497 participant-days of 72 participants. A one-point increase in allergy symptom score was associated with an increase in next-day resting heart rate of 0.08 (95% CI: 0.02-0.15) beats per minute. A one-point increase in mood score was associated with an increase in same-day sample entropy of 0.80 (95% CI: 0.34-1.26) × 10-2 . No associations were found between allergy symptoms and heart rate sample entropy, nor between mood and resting heart rate. CONCLUSION: Daily repeated measurements with a wearable telemonitoring system revealed that the daily allergy burden of adults with allergic rhinitis has systemic effects beyond merely the respiratory system.

2.
Sci Total Environ ; 873: 162372, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36828067

RESUMO

Current radiocesium (137Cs) models to evaluate the risk of 137Cs transfer from soil to plants are based on the clay and exchangeable potassium (K) contents in soil. These models disregard the mineralogy of the clay fraction and are likely not capable of accurately predicting the 137Cs transfer factor (TF) in soils of contrasting parent rocks and weathering stages. The objectives of this study were to test that hypothesis and to identify whether quantitative information on mineralogy can improve the predictions. A pot cultivation experiment was set up with clay-sand mixtures in single and double clay doses that were fertilized, spiked with 137Cs and grown with ryegrass for 30 days. Four clays (illite, biotite, smectite and vermiculite) along with six deposits from clay-rich geological units were compared. The TF generally decreased with increasing clay dose for each of these ten different clay groups, however, the TF varied two orders of magnitude across clay groups and doses. The TF was highest for clays with little 137Cs specific sites such as bentonite and/or where the exchangeable K content was low compared to the other clays. The TF was well predicted from the soil solution 137Cs and K concentrations (R2 = 0.72 for log transformed TF), corroborating earlier findings in natural soils. The TF (log transformed) was statistically unrelated to total phyllosilicate content or 1:1 and 2:1:1 type phyllosilicate content while it significantly decreased with increasing 2:1 phyllosilicate content (R2 = 0.32). A multiple regression model with four different X-ray diffraction (XRD) based phyllosilicate groups yielded the strongest predictive power (R2 = 0.74). We conclude that XRD quantification is valuable for describing 137Cs bioavailability in plant substrates. These findings now await confirmation for natural soils.


Assuntos
Radioisótopos de Césio , Argila , Lolium , Poluentes Radioativos do Solo , Disponibilidade Biológica , Radioisótopos de Césio/análise , Argila/química , Plantas , Solo/química , Poluentes Radioativos do Solo/análise
3.
Epigenetics ; 17(13): 1863-1874, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35723001

RESUMO

Green space could influence adult cognition and childhood neurodevelopment , and is hypothesized to be partly driven by epigenetic modifications. However, it remains unknown whether some of these associations are already evident during foetal development. Similar biological signals shape the developmental processes in the foetal brain and placenta.Therefore, we hypothesize that green space can modify epigenetic processes of cognition-related pathways in placental tissue, such as DNA-methylation of the serotonin receptor HTR2A. HTR2A-methylation was determined within 327 placentas from the ENVIRONAGE (ENVIRonmental influence ON early AGEing) birth cohort using bisulphite-PCR-pyrosequencing. Total green space exposure was calculated using high-resolution land cover data derived from the Green Map of Flanders in seven buffers (50 m-3 km) and stratified into low (<3 m) and high (≥3 m) vegetation. Residential nature was calculated using the Land use Map of Flanders. We performed multivariate regression models adjusted for several a priori chosen covariables. For an IQR increment in total green space within a 1,000 m, 2,000 m and 3,000 m buffer the methylation of HTR2A increased with 1.47% (95%CI:0.17;2.78), 1.52% (95%CI:0.21;2.83) and 1.42% (95%CI:0.15;2.69), respectively. Additionally,, we found 3.00% (95%CI:1.09;4.91) and 1.98% (95%CI:0.28;3.68) higher HTR2A-methylation when comparing residences with and without the presence of nature in a 50 m and 100 m buffer, respectively. The methylation status of HTR2A in placental tissue is positively associated with maternal green space exposure. Future research is needed to understand better how these epigenetic changes are related to functional modifications in the placenta and the consequent implications for foetal development.


Assuntos
Metilação de DNA , Epigênese Genética , Parques Recreativos , Placenta , Receptor 5-HT2A de Serotonina , Feminino , Humanos , Gravidez , Placenta/metabolismo , Regiões Promotoras Genéticas , Receptor 5-HT2A de Serotonina/genética , Exposição Materna
4.
Sci Total Environ ; 833: 155189, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35427613

RESUMO

Forests and wood products play a major role in climate change mitigation strategies and the transition from a fossil-based economy to a circular bioeconomy. Accurate estimates of future forest productivity are crucial to predict the carbon sequestration and wood provision potential of forests. Since long, forest managers have used empirical yield tables as a cost-effective and reliable way to predict forest growth. However, recent climate change-induced growth shifts raised doubts about the long-term validity of these yield tables. In this study, we propose a methodology to improve available yield tables of 11 tree species in the Netherlands and Flanders, Belgium. The methodology uses scaling functions derived from climate-sensitive process-based modelling (PBM) that reflect state-of-the-art projections of future growth trends. Combining PBM and stand information from the empirical yield tables for the region of Flanders, we found that for the period 1987-2016 stand productivity has on average increased by 13% compared to 1961-1990. Furthermore, simulations indicate that this positive growth trend is most likely to persist in the coming decades, for all considered species, climate or site conditions. Nonetheless, results showed that local site variability is equally important to consider as the in- or exclusion of the CO2 fertilization effect or different climate projections, when assessing the magnitude of forests' response to climate change. Our projections suggest that incorporating these climate change-related productivity changes lead to a 7% increase in standing stock and a 22% increase in sustainably potentially harvestable woody biomass by 2050. The proposed methodology and resulting estimates of climate-sensitive projections of future woody biomass stocks will facilitate the further incorporation of forests and their products in global and regional strategies for the transition to a climate-smart circular bioeconomy.


Assuntos
Carbono , Mudança Climática , Biomassa , Carbono/metabolismo , Florestas , Árvores
5.
Sci Total Environ ; 781: 146682, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33812114

RESUMO

BACKGROUND: The prevalence of pollen allergy has increased due to urbanization, climate change and air pollution. The effects of green space and air pollution on respiratory health of pollen allergy patients are complex and best studied in spatio-temporal detail. METHODS: We tracked 144 adults sensitized to Betulaceae pollen during the tree pollen season (January-May) of 2017 and 2018 and assessed their spatio-temporal exposure to green space, allergenic trees, air pollutants and birch pollen. Participants reported daily symptom severity scores. We extracted 404 case days with high symptom severity scores and matched these to 404 control days. The data were analyzed using conditional logistic regression with a 1:1 case-crossover design. RESULTS: Case days were associated with exposure to birch pollen concentration (100 grains/m3) [adjusted odds ratio 1.045 and 95% confidence interval (1.014-1.078)], O3 concentration (10 µg/m3) [1.504 (1.281-1.766)] and PM10 concentration (10 µg/m3) [1.255 (1.007-1.565)] on the day of the severe allergy event and with the cumulative exposure of one and two days before. Exposure to grass cover (10% area fraction) [0.655 (0.446-0.960)], forest cover (10% area fraction) [0.543 (0.303-0.973)] and density of Alnus (10%) [0.622 (0.411-0.942)] were protective for severe allergy, but only on the day of the severe allergy event. Increased densities of Betula trees (10%) were a risk factor [unadjusted OR: 2.014 (1.162-3.490)]. CONCLUSION: Exposure to green space may mitigate tree pollen allergy symptom severity but only when the density of allergenic trees is low. Air pollutants contribute to more severe allergy symptoms. Spatio-temporal tracking allows for a more realistic exposure assessment.


Assuntos
Rinite Alérgica Sazonal , Adulto , Alérgenos , Bélgica/epidemiologia , Betula , Estudos Cross-Over , Humanos , Parques Recreativos , Pólen , Rinite Alérgica Sazonal/epidemiologia
6.
PLoS One ; 15(10): e0239583, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002043

RESUMO

Soil sealing increases surface runoff in a watershed and decreases infiltration into the soil. Consequently, urbanization poses a significant challenge for watershed management to mitigate faster runoff accumulation downstream and associated floods. Hydrological models are often employed to assess the impact of land-use dynamics on flood events. Alternatively, data-driven approaches combining time series of land use geodatasets and georeferenced flooded zones also allow to assess the relationship between soil sealing and flood severity. This study presents such data-driven analysis using a spatially explicit archive of flooded areas dating back to 1988 in the Flanders region of Belgium, which is characterized by urban sprawl. This archived data, along with time series of rainfall and land use, were analyzed for three middle-sized river subbasins using two machine learning methods: boosted regression trees and support vector regression. The machine learning methods were found suitable for this type of analysis, since their flexibility allows for spatially explicit models with larger sample sizes. However, the relationship between soil sealing and flood volume and extent could not be conclusively confirmed by our models. This may be due to data limitations, such as the limited number of recorded historical floods, inaccuracies in recorded historical flood polygons and inconsistencies in the land use classifications. It is therefore stressed that continued consistent monitoring of floods and land use changes is required.


Assuntos
Inundações , Desastres Naturais , Solo , Bélgica , Inundações/estatística & dados numéricos , Chuva , Análise Espacial , Urbanização , Movimentos da Água
7.
Environ Res ; 189: 109914, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32980008

RESUMO

BACKGROUND: Living in green environments has been associated with various health benefits, but the evidence for positive effects on respiratory health in children is ambiguous. OBJECTIVE: To investigate if residential exposure to different types of green space is associated with childhood asthma prevalence in Belgium. METHODS: Asthma prevalence was estimated from sales data of reimbursed medication for obstructive airway disease (OAD) prescribed to children between 2010 and 2014, aggregated at census tract level (n = 1872) by sex and age group (6-12 and 13-18 years). Generalized log-linear mixed effects models with repeated measures were used to estimate effects of relative covers of forest, grassland and garden in the census tract of the residence on OAD medication sales. Models were adjusted for air pollution (PM10), housing quality and administrative region. RESULTS: Consistent associations between OAD medication sales and relative covers of grassland and garden were observed (unadjusted parameter estimates per IQR increase of relative cover, range across four strata: grassland, ß = 0.15-0.17; garden, ß = 0.13-0.17). The associations remained significant after adjusting for housing quality and chronic air pollution (adjusted parameter estimates per IQR increase of relative cover, range across four strata: grassland, ß = 0.10-0.14; garden, ß = 0.07-0.09). There was no association between OAD medication sales and forest cover. CONCLUSIONS: Based on aggregated data, we found that living in close proximity to areas with high grass cover (grasslands, but also residential gardens) may negatively impact child respiratory health. Potential allergic and non-allergic mechanisms that underlie this association include elevated exposure to grass pollen and fungi and reduced exposure to environmental biodiversity. Reducing the dominance of grass in public and private green space might be beneficial to reduce the childhood asthma burden and may simultaneously improve the ecological value of urban green space.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Asma , Poluição do Ar/análise , Asma/induzido quimicamente , Asma/tratamento farmacológico , Asma/epidemiologia , Bélgica/epidemiologia , Criança , Comércio , Exposição Ambiental/análise , Humanos , Parques Recreativos
8.
Environ Manage ; 65(4): 490-499, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32055915

RESUMO

In order to foster the potential of exclosures to sequester carbon, it is understood that they are increasingly assisted through enrichment planting. To study the impact of the enrichment planting on carbon sequestration process, five exclosures with enrichment planting and five pure naturally regenerated exclosures were selected. Along parallel transects, 20 × 20 m plots were laid at 100 m intervals where all woody vegetations were counted and measured for their diameter and total height. For soil sampling, five subplots at the center and four at each corner of the plots were established. The samples were collected at a depth of 0-0.2 m, and this procedure was repeated for each plot. In this case, when good management practices were implemented (such as Wukro exclosures), significant differences in organic soil carbon above the ground and the total carbon between naturally regenerated and enriched exclosures (P < 0.05) were found. The mean estimates of the above ground carbon, soil carbon, and total carbon were respectively 8.08, 31.04, and 39.12 ton/ha for natural regeneration vs. 7.94, 31.00, and 38.93 ton/ha for enriched regeneration. Lower altitudes had significantly higher soil organic carbon (P < 0.05) than the higher altitudes. However, the slope had an insignificant effect on carbon distribution. Enriched exclosures performed more poorly in carbon sequestration. This was possibly due to the disturbances caused by mass plantation and poor post plantation follow up, since improved performance (P < 0.05) was seen in one enriched exclosure with better management practices.


Assuntos
Mudança Climática , Solo , Carbono , Sequestro de Carbono , Etiópia
9.
Int J Hyg Environ Health ; 223(1): 71-79, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628039

RESUMO

BACKGROUND: Residential green space may improve human health, for example by promoting physical activity and by reducing stress. Conversely, residential green space may increase stress by emitting aeroallergens and exacerbating allergic disease. Here we examine impacts of exposure to residential green space on distress in the susceptible subpopulation of adults sensitized to tree pollen allergens. METHODS: In a panel study of 88 tree pollen allergy patients we analyzed self-reported mental health (GHQ-12), perceived presence of allergenic trees (hazel, alder, birch) near the residence and residential green space area within 1 km distance [high (≥3 m) and low (<3 m) green]. Results were adjusted for patients' background data (gender, age, BMI, smoking status, physical activity, commuting distance, education level, allergy medication use and chronic respiratory problems) and compared with distress in the general population (N = 2467). RESULTS: Short-term distress [mean GHQ-12 score 2.1 (95% confidence interval 1.5-2.7)] was higher in the study population than in the general population [1.5 (1.4-1.7)]. Residential green space had protective effects against short-term distress [high green, per combined surface area of 10 ha: adjusted odds ratio OR = 0.94 (95% confidence interval 0.90-0.99); low green, per 10 ha: OR = 0.85 (0.78-0.93)]. However, distress was higher in patients who reported perceived presence of allergenic trees near their residence [present vs. absent: OR = 2.04 (1.36-3.07)]. CONCLUSIONS: Perceived presence of allergenic tree species in the neighbourhood of the residence of tree pollen allergy patients modulates the protective effect of residential green space against distress during the airborne tree pollen season.


Assuntos
Ambiente Construído , Exposição Ambiental/estatística & dados numéricos , Angústia Psicológica , Rinite Alérgica Sazonal/epidemiologia , Adulto , Alérgenos , Feminino , Humanos , Hipersensibilidade , Masculino , Pólen , Estações do Ano , Árvores
10.
Environ Manage ; 62(6): 1108-1133, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30128584

RESUMO

The role of digital technologies for fostering sustainability and efficiency in forest-based supply chains is well acknowledged and motivated several studies in the scope of precision forestry. Sensor technologies can collect relevant data in forest-based supply chains, comprising all activities from within forests and the production of the woody raw material to its transformation into marketable forest-based products. Advanced planning systems can help to support decisions of the various entities in the supply chain, e.g., forest owners, harvest companies, haulage companies, and forest product processing industry. Such tools can help to deal with the complex interdependencies between different entities, often with opposing objectives and actions-which may increase efficiency of forest-based supply chains. This paper analyzes contemporary literature dealing with digital technologies in forest-based supply chains and summarizes the state-of-the-art digital technologies for real-time data collection on forests, product flows, and forest operations, as well as planning systems and other decision support systems in use by supply chain actors. Higher sustainability and efficiency of forest-based supply chains require a seamless information flow to foster integrated planning of the activities over the supply chain-thereby facilitating seamless data exchange between the supply chain entities and foster new forms of collaboration. Therefore, this paper deals with data exchange and multi-entity collaboration aspects in combination with interoperability challenges related with the integration among multiple process data collection tools and advanced planning systems. Finally, this interdisciplinary review leads to the discussion of relevant guidelines that can guide future research and integration projects in this domain.


Assuntos
Agricultura Florestal/tendências , Tomada de Decisões , Agricultura Florestal/métodos , Florestas , Tecnologia , Madeira/química
11.
Environ Sci Technol ; 52(1): 298-307, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29185731

RESUMO

Monitoring human exposure to pesticides and pesticide residues (PRs) remains crucial for informing public health policies, despite strict regulation of plant protection product and biocide use. We used 72 low-cost silicone wristbands as noninvasive passive samplers to assess cumulative 5-day exposure of 30 individuals to polar PRs. Ethyl acetate extraction and LC-MS/MS analysis were used for the identification of PRs. Thirty-one PRs were detected of which 15 PRs (48%) were detected only in worn wristbands, not in environmental controls. The PRs included 16 fungicides (52%), 8 insecticides (26%), 2 herbicides (6%), 3 pesticide derivatives (10%), 1 insect repellent (3%), and 1 pesticide synergist (3%). Five detected pesticides were not approved for plant protection use in the EU. Smoking and dietary habits that favor vegetable consumption were associated with higher numbers and higher cumulative concentrations of PRs in wristbands. Wristbands featured unique PR combinations. Our results suggest both environment and diet contributed to PR exposure in our study group. Silicone wristbands could serve as sensitive passive samplers to screen population-wide cumulative dietary and environmental exposure to authorized, unauthorized and banned pesticides.


Assuntos
Resíduos de Praguicidas , Praguicidas , Cromatografia Líquida , Monitoramento Ambiental , Humanos , Silicones , Espectrometria de Massas em Tandem
12.
Sci Total Environ ; 589: 153-164, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28258751

RESUMO

The soil organic carbon (SOC) stock is an important indicator in ecosystem service assessments. Even though a considerable fraction of the total stock is stored in the subsoil, current assessments often consider the topsoil only. Furthermore, mapping efforts are hampered by the limited spatial density of these topsoil measurements. The aim of this study was to assess the SOC stock in the upper 100cm of soil in 30,556ha of Low-Input High-Diversity systems, such as nature reserves, in Flanders (Belgium) and compare this estimate with the stock found in the topsoil (upper 15cm). To this end, we combined depth extrapolation of 139 measurements limited to the topsoil with four digital soil mapping techniques: multiple linear regression, boosted regression trees, artificial neural networks and least-squares support vector machines. Particular attention was given to vegetation characteristics as predictors. For both the stock in the upper 15cm and 100cm, a boosted regression trees approach was most informative as it resulted in the lowest cross-validation errors and provided insights in the relative importance of predictors. The predictors of the stock in the upper 100cm were soil type, groundwater level, clay fraction and community weighted mean (CWM) and variance (CWV) of plant height. These predictors, together with the CWM of specific leaf area, aboveground biomass production, CWV and CWM of rooting depth, terrain slope, CWM of mycorrhizal associations and species diversity also explained the topsoil stock. Our total stock estimates show that focusing on the topsoil (1.63Tg OC) only considers 36% of the stock in the upper 100cm (4.53Tg OC). Given the magnitude of subsoil OC and its dependency on typical ecosystem characteristics, it should not be neglected in regional ecosystem service assessments.

13.
Glob Chang Biol ; 11(12): 2128-2140, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34991277

RESUMO

The present study quantifies changes in soil organic carbon (SOC) stocks in Belgium between 1960, 1990 and 2000 for 289 spatially explicit land units with unique soil association and land-use type, termed landscape units (LSU). The SOC stocks are derived from multiple nonstandardized sets of field measurements up to a depth of 30 cm. Approximately half of the LSU show an increase in SOC between 1960 and 2000. The significant increases occur mainly in soils of grassland LSU in northern Belgium. Significant decreases are observed on loamy cropland soils. Although the largest SOC gains are observed for LSU under forest (22 t C ha-1 for coniferous and 29 t C ha-1 for broadleaf and mixed forest in the upper 30 cm of soil), significant changes are rare because of large variability. Because the number of available measurements is very high for agricultural land, most significant changes occur under cropland and grassland, but the corresponding average SOC change is smaller than for forests (9 t C ha-1 increase for grassland and 1 t C ha-1 decrease for cropland). The 1990 data for agricultural LSU show that the SOC changes between 1960 and 2000 are not linear. Most agricultural LSU show a higher SOC stock in 1990 than in 2000, especially in northern Belgium. The observed temporal and spatial patterns can be explained by a change in manure application intensity. SOC stock changes caused by land-use change are estimated. The SOC change over time is derived from observed differences between SOC stocks in space. Because SOC stocks are continuously influenced by a number of external factors, mainly land-use history and current land management and climate, this approach gives only an approximate estimate whose validity is limited to these conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA