Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(20): 9018-9031, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39373529

RESUMO

Modern graphics processing units (GPUs) provide an unprecedented level of computing power. In this study, we present a high-performance, multi-GPU implementation of the analytical nuclear gradient for Kohn-Sham time-dependent density functional theory (TDDFT), employing the Tamm-Dancoff approximation (TDA) and Gaussian-type atomic orbitals as basis functions. We discuss GPU-efficient algorithms for the derivatives of electron repulsion integrals and exchange-correlation functionals within the range-separated scheme. As an illustrative example, we calculate the TDA-TDDFT gradient of the S1 state of a full-scale green fluorescent protein with explicit water solvent molecules, totaling 4353 atoms, at the ωB97X/def2-SVP level of theory. Our algorithm demonstrates favorable parallel efficiencies on a high-speed distributed system equipped with 256 Nvidia A100 GPUs, achieving >70% with up to 64 GPUs and 31% with 256 GPUs, effectively leveraging the capabilities of modern high-performance computing systems.

2.
Phys Chem Chem Phys ; 26(42): 26734-26747, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39431338

RESUMO

The increasingly large number of complex organic molecules detected in the interstellar medium necessitates robust kinetic models that can be relied upon for investigating the involved chemical processes. Such models require rate coefficients for each of the thousands of reactions; the values of these are often estimated or extrapolated, leading to large uncertainties that are rarely quantified. We have performed a global Monte Carlo and a more local one-at-a-time sensitivity analysis on the gas-phase rate coefficients in a 3-phase dark cloud model. Time-dependent sensitivities have been calculated using four metrics to determine key reactions for the overall network as well as for the cyanonaphthalene molecule in particular, an important interstellar species that is severely under-produced by current models. All four metrics find that reactions involving small, reactive species that initiate hydrocarbon growth have large effects on the overall network. Cyanonaphthalene is most sensitive to a number of these reactions as well as ring-formation of the phenyl cation (C6H5+) and aromatic growth from benzene to naphthalene. Future efforts should prioritize constraining rate coefficients of key reactions and expanding the network surrounding these processes. These results highlight the strength of sensitivity analysis techniques to identify critical processes in complex chemical networks, such as those often used in astrochemical modeling.

3.
Nat Commun ; 15(1): 8001, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266582

RESUMO

An accurate treatment of electronic spectra in large systems with a technique such as time-dependent density functional theory is computationally challenging. Due to the Nyquist sampling theorem, direct real-time simulations must be prohibitively long to achieve suitably sharp resolution in frequency space. Super-resolution techniques such as compressed sensing and MUSIC assume only a small number of excitations contribute to the spectrum, which fails in large molecular systems where the number of excitations is typically very large. We present an approach that combines exact short-time dynamics with approximate frequency space methods to capture large narrow features embedded in a dense manifold of smaller nearby peaks. We show that our approach can accurately capture narrow features and a broad quasi-continuum of states simultaneously, even when the features overlap in frequency. Our approach is able to reduce the required simulation time to achieve reasonable accuracy by a factor of 20-40 with respect to standard Fourier analysis and shows promise for accurately predicting the whole spectrum of large molecules and materials.

4.
J Phys Chem A ; 128(33): 6989-6998, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39121455

RESUMO

X-ray photoelectron spectroscopy (XPS) measures core-electron binding energies (CEBEs) to reveal element-specific insights into the chemical environment and bonding. Accurate theoretical CEBE prediction aids XPS interpretation but requires proper modeling of orbital relaxation and electron correlation upon core-ionization. This work systematically investigates basis set selection for extrapolation to the complete basis set limit of CEBEs from ΔMP2 and ΔCC energies across 94 K-edges in diverse organic molecules. We demonstrate that an alternative composite scheme using ΔMP2 in a large basis corrected by ΔCC-ΔMP2 difference in a small basis can quantitatively recover optimally extrapolated ΔCC CEBEs within 0.02 eV. Unlike ΔCC, MP2 calculations do not suffer from convergence issues and are computationally cheaper, and thus, the composite ΔMP2/ΔCC scheme balances accuracy and cost, overcoming limitations of solely using either method. We conclude by providing a comprehensive analysis of the choice of small and large basis sets for the composite schemes and provide practical recommendations for highly accurate (within 0.10-0.15 eV MAE) ab initio prediction of XPS data.

5.
Nano Lett ; 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843032

RESUMO

The widespread application of III-V colloidal quantum dots (QDs) as nontoxic, highly tunable emitters is stymied by their high density of trap states. Here, we utilize density functional theory (DFT) to investigate trap state formation in a diverse set of realistically passivated core-only InP and GaP QDs. Through orbital localization techniques, we deconvolute the dense manifold of trap states to allow for detailed assignment of surface defects. We find that the three-coordinate species dominate trapping in III-V QDs and identify features in the geometry and charge environment of trap centers capable of deepening, or sometimes passivating, traps. Furthermore, we observe stark differences in surface reconstruction between InP and GaP, where the more labile InP reconstructs to passivate three-coordinate indium at the cost of distortion elsewhere. These results offer explanations for experimentally observed trapping behavior and suggest new avenues for controlling trap states in III-V QDs.

6.
ACS Nano ; 18(11): 8248-8258, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38428021

RESUMO

Imposing quantum confinement has the potential to significantly modulate both the structural and optical parameters of interest in many material systems. In this work, we investigate strongly confined ultrathin perovskite nanoplatelets APbBr3. We compare the all-inorganic and hybrid compositions with the A-sites cesium and formamidinium, respectively. Compared to each other and their bulk counterparts, the materials show significant differences in variable-temperature structural and optical evolution. We quantify and correlate structural asymmetry with the excitonic transition energy, spectral purity, and emission rate. Negative thermal expansion, structural and photoluminescence asymmetry, photoluminescence full width at half-maximum, and splitting between bright and dark excitonic levels are found to be reduced in the hybrid composition. This work provides composition- and structure-based mechanisms for engineering of the excitons in these materials.

7.
J Phys Chem A ; 127(34): 7175-7185, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37585686

RESUMO

We use time-dependent density functional theory (TDDFT) to investigate the mechanism of efficient triplet-triplet upconversion (TTU) in certain organic materials. In particular, we focus on materials where some singlets are generated in a two-step spin-nonconserving process (T1 + T1 → T2 → S1). For this mechanism to contribute significantly, the intersystem crossing (ISC) from the high-lying triplet to the singlet (T2 → S1) must outcompete the internal conversion (IC) to the low-lying triplet (T2 → T1). By considering multiple families of materials, we show that the T2 → S1 ISC can be enhanced in a number of ways: the substitution of electron-donating (ED) and electron-withdrawing (EW) groups at appropriate positions; the substitution of bulky groups that distort the molecular geometry; and the substitution of heavy atoms that enhance the spin-orbit coupling (SOC). In the first two cases, the enhancements are consistent with El-Sayed's rule in that rapid T2 → S1 ISC requires significant differences in the characters of the S1 and the T2 wavefunctions. Together, these effects enable a wide tunability of T2 → S1 ISC rates over at least 5 orders of magnitude. Meanwhile, the T2 → T1 IC is inhibited in these systems due to the large T2 - T1 energy gap >0.5 eV, which entails a high energy barrier to the T2 → T1 IC and the prediction of a slow rate regardless of the substituents or the presence of heavy atoms. In this way, tuning the T2 → S1 ISC appears to provide an effective strategy to achieve systematic improvement of TTU materials.

8.
Adv Mater ; 35(39): e2304069, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37485908

RESUMO

Mechanistic studies of the morphology of lead halide perovskite nanocrystals (LHP-NCs) are hampered by a lack of generalizable suitable synthetic strategies and ligand systems. Here, the synthesis of zwitterionic CsPbBr3 NCs is presented with controlled anisotropy using a proposed "surface-selective ligand pairs" strategy. Such a strategy provides a platform to systematically study the binding affinity of capping ligand pairs and the resulting LHP morphologies. By using zwitterionic ligands (ZwL) with varying structures, majority ZwL-capped LHP NCs with controlled morphology are obtained, including anisotropic nanoplatelets and nanorods, for the first time. Combining experiments with density functional theory calculations, factors that govern the ligand binding on the different surface facets of LHP-NCs are revealed, including the steric bulkiness of the ligand, the number of binding sites, and the charge distance between binding moieties. This study provides guidance for the further exploration of anisotropic LHP-NCs.

10.
J Chem Theory Comput ; 19(11): 3123-3130, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37155327

RESUMO

Bootstrap embedding (BE) is a recently developed electronic structure method that has shown great success at treating electron correlation in molecules. Here, we extend BE to treat surfaces and solids where the wave function is represented in periodic boundary conditions using reciprocal space sums (i.e., k-point sampling). The major benefit of this approach is that the resulting fragment Hamiltonians carry no explicit dependence on the reciprocal space sums, allowing one to apply traditional nonperiodic electronic structure codes to the fragments even though the entire system requires careful consideration of periodic boundary conditions. Using coupled cluster singles and doubles (CCSD) as an example method to solve the fragment Hamiltonians, we present minimal basis set CCSD-in-HF results on 1D conducting polymers. We show that periodic BE-CCSD can typically recover ∼99.9% of the electron correlation energy. We further demonstrate that periodic BE-CCSD is feasible even for complex donor-acceptor polymers of interest to organic solar cells─despite the fact that the monomers are sufficiently large that even a Γ-point periodic CCSD calculation is prohibitive. We conclude that BE is a promising new tool for applying molecular electronic structure tools to solids and interfaces.

11.
J Chem Theory Comput ; 19(8): 2230-2247, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37001026

RESUMO

We extend molecular bootstrap embedding to make it appropriate for implementation on a quantum computer. This enables solution of the electronic structure problem of a large molecule as an optimization problem for a composite Lagrangian governing fragments of the total system, in such a way that fragment solutions can harness the capabilities of quantum computers. By employing state-of-art quantum subroutines including the quantum SWAP test and quantum amplitude amplification, we show how a quadratic speedup can be obtained over the classical algorithm, in principle. Utilization of quantum computation also allows the algorithm to match─at little additional computational cost─full density matrices at fragment boundaries, instead of being limited to 1-RDMs. Current quantum computers are small, but quantum bootstrap embedding provides a potentially generalizable strategy for harnessing such small machines through quantum fragment matching.

12.
Nano Lett ; 23(6): 2148-2157, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36884029

RESUMO

Quantum confined lead halide perovskite nanoplatelets are anisotropic materials displaying strongly bound excitons with spectrally pure photoluminescence. We report the controlled assembly of CsPbBr3 nanoplatelets through varying the evaporation rate of the dispersion solvent. We confirm the assembly of superlattices in the face-down and edge-up configurations by electron microscopy, as well as X-ray scattering and diffraction. Polarization-resolved spectroscopy shows that superlattices in the edge-up configuration display significantly polarized emission compared to face-down counterparts. Variable-temperature X-ray diffraction of both face-down and edge-up superlattices uncovers a uniaxial negative thermal expansion in ultrathin nanoplatelets, which reconciles the anomalous temperature dependence of the emission energy. Additional structural aspects are investigated by multilayer diffraction fitting, revealing a significant decrease in superlattice order with decreasing temperature, with a concomitant expansion of the organic sublattice and increase of lead halide octahedral tilt.

13.
Nano Lett ; 23(4): 1128-1134, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36780509

RESUMO

Lead halide perovskite nanocrystals (LHP NCs) are an emerging materials system with broad potential applications, including as emitters of quantum light. We apply design principles aimed at the structural optimization of surface ligand species for CsPbBr3 NCs, leading us to the study of LHP NCs with dicationic quaternary ammonium bromide ligands. Through the selection of linking groups and aliphatic backbones guided by experiments and computational support, we demonstrate consistently narrow photoluminescence line shapes with a full-width-at-half-maximum below 70 meV. We observe bulk-like Stokes shifts throughout our range of particle sizes, from 7 to 16 nm. At cryogenic temperatures, we find sub-200 ps lifetimes, significant photon coherence, and the fraction of photons emitted into the coherent channel increasing markedly to 86%. A 4-fold reduction in inhomogeneous broadening from previous work paves the way for the integration of LHP NC emitters into nanophotonic architectures to enable advanced quantum optical investigation.

14.
J Phys Chem Lett ; 14(5): 1174-1181, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36715489

RESUMO

Colloidal semiconductor nanocrystals have attracted much interest due to their unique optical properties, with applications ranging from displays to biomedical imaging. Nanocrystal optical properties depend on the structure of the surface, where defects can lead to traps. CdSe nanocrystals undergo surface reorganization, or self-healing, to eliminate defects, removing midgap traps from the band structure. However, the effect of this process on the optical spectrum is not well studied. Here, we show that self-healing not only eliminates midgap traps from the band structure but also brightens the spectrum and causes the excitonic states to emerge as the dominant features, in agreement with experimental annealing studies. We find that self-healing can lead to new traps like bonded Se-Se or Cd-Cd dimers, and their behavior is different from that of undercoordinated atom traps. These results suggest that eliminating traps requires a balance of allowing enough surface reorganization to eliminate undercoordinated atoms, but not so much that dimeric traps form.

15.
J Am Chem Soc ; 144(50): 23010-23018, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36475637

RESUMO

Novel approaches to the functionalization of commodity polymers could provide avenues for the synthesis of materials for next-generation electronic devices. Herein, we present a catalytic method for the conversion of common unsaturated polymers such as polybutadiene, polyisoprene, and styrene-butadiene copolymers [e.g., polystyrene-block-polybutadiene-block-polystyrene and poly(styrene-stat-butadiene)] to poly(acetylene) (PA)-based multiblock copolymers with conjugation lengths of up to ∼20, making them potentially suitable for electronics applications. Additionally, we demonstrate the application of this method to the formal conversion of polyethylene─the most widely produced thermoplastic─into PA-containing multiblock materials.

16.
Nat Mater ; 21(11): 1275-1281, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36202994

RESUMO

Triplet-fusion-based photon upconversion holds promise for a wide range of applications, from photovoltaics to bioimaging. The efficiency of triplet fusion, however, is fundamentally limited in conventional molecular and polymeric systems by its spin dependence. Here, we show that the inherent tailorability of metal-organic frameworks (MOFs), combined with their highly porous but ordered structure, minimizes intertriplet exchange coupling and engineers effective spin mixing between singlet and quintet triplet-triplet pair states. We demonstrate singlet-quintet coupling in a pyrene-based MOF, NU-1000. An anomalous magnetic field effect is observed from NU-1000 corresponding to an induced resonance between singlet and quintet states that yields an increased fusion rate at room temperature under a relatively low applied magnetic field of 0.14 T. Our results suggest that MOFs offer particular promise for engineering the spin dynamics of multiexcitonic processes and improving their upconversion performance.


Assuntos
Estruturas Metalorgânicas , Polímeros/química
18.
J Phys Chem A ; 126(20): 3090-3100, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35544770

RESUMO

Despite the long history of spectroscopic studies of the C2 molecule, fundamental questions about its chemical bonding are still being hotly debated. The complex electronic structure of C2 is a consequence of its dense manifold of near-degenerate, low-lying electronic states. A global multi-state diabatic model is proposed here to disentangle the numerous configuration interactions that occur within four symmetry manifolds of excited states of C2 (1Πg, 3Πg, 1Σu+ , and 3Σu+ ). The key concept of our model is the existence of two "valence-hole" configurations, 2σg22σu11πu33σg2 for 1,3Πg states and 2σg22σu11πu43σg1 for 1,3Σu+ states, that are derived from 3σg ← 2σu electron promotion. The lowest-energy state from each of the four C2 symmetry species is dominated by this type of valence-hole configuration at its equilibrium internuclear separation. As a result of their large binding energy (nominal bond order of 3) and correlation with the 2s22p2 + 2s2p3 separated-atom configurations, the presence of these valence-hole configurations has a profound impact on the global electronic structure and unimolecular dynamics of C2.

19.
J Chem Phys ; 155(14): 144107, 2021 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-34654306

RESUMO

Lattice models are a useful tool to simulate the kinetics of surface reactions. Since it is expensive to propagate the probabilities of the entire lattice configurations, it is practical to consider the occupation probabilities of a typical site or a cluster of sites instead. This amounts to a moment closure approximation of the chemical master equation. Unfortunately, simple closures, such as the mean-field and the pair approximation (PA), exhibit weaknesses in systems with significant long-range correlation. In this paper, we show that machine learning (ML) can be used to construct accurate moment closures in chemical kinetics using the lattice Lotka-Volterra model as a model system. We trained feedforward neural networks on kinetic Monte Carlo (KMC) results at select values of rate constants and initial conditions. Given the same level of input as PA, the ML moment closure (MLMC) gave accurate predictions of the instantaneous three-site occupation probabilities. Solving the kinetic equations in conjunction with MLMC gave drastic improvements in the simulated dynamics and descriptions of the dynamical regimes throughout the parameter space. In this way, MLMC is a promising tool to interpolate KMC simulations or construct pretrained closures that would enable researchers to extract useful insight at a fraction of the computational cost.

20.
Nano Lett ; 21(18): 7457-7464, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516138

RESUMO

As luminescence applications of colloidal semiconductor nanocrystals push toward higher excitation flux conditions, there is an increased need to both understand and potentially control emission from multiexciton states. We develop a spectrally resolved correlation method to study the triply excited state that enables direct measurements of the recombination pathway for the triexciton, rather than relying on indirect extraction of rates. We demonstrate that, for core-shell CdSe-CdS nanocrystals, triexciton emission arises exclusively from the band-edge S-like state. Time-dependent density functional theory and extended particle-in-a-sphere calculations demonstrate that reduced carrier overlap induced by the core-shell heterostructure can account for the lack of emission observed from the P-like state. These results provide a potential avenue for the control of nanocrystal luminescence, where core-shell heterostructures can be leveraged to control carrier separation and therefore maintain emission color purity over a broader range of excitation fluxes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA