Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 23(2)2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29443883

RESUMO

N-Substituted pyridinium salts constitute one of the most valuable reagent classes in organic synthesis, due to their versatility and ease of use. Herein we report a preliminary synthesis and detailed structural analysis of several N-(1-ethoxyvinyl)pyridinium triflates, an unusual class of pyridinium salts with potentially broad use as a reagent in organic synthesis. Treatment of pyridines with trifluoromethane sulfonic acid and ethoxyacetylene generates stable, isolable adducts which have been extensively characterized, due to their novelty. Three-dimensional structural stability is perpetuated by an array of C-H•••O hydrogen bonds involving oxygen atoms from the -SO3 groups of the triflate anion, and hydrogen atoms from the aromatic ring and vinyl group of the pyridinium cation. Predictions from density functional theory calculations of the energy landscape for rotation about the exocyclic C-N bond of 2-chloro-1-(1-ethoxyvinyl)pyridine-1-ium trifluoromethanesulfonate (7) and 1-(1-ethoxyvinyl)pyridine-1-ium trifluoromethanesulfonate (16) are also reported. Notably, the predicted global energy minimum of 7 was nearly identical to that found within the crystal structure.


Assuntos
Mesilatos/química , Piridinas/química , Compostos de Piridínio/química , Ligação de Hidrogênio , Mesilatos/síntese química , Modelos Moleculares , Estrutura Molecular , Oxigênio/química , Piridinas/síntese química , Compostos de Piridínio/síntese química , Sais/química
2.
Proc Natl Acad Sci U S A ; 108(43): 17672-7, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-22006297

RESUMO

PCNA ubiquitination in response to DNA damage leads to the recruitment of specialized translesion polymerases to the damage locus. This constitutes one of the initial steps in translesion synthesis (TLS)--a critical pathway for cell survival and for maintenance of genome stability. The recent crystal structure of ubiquitinated PCNA (Ub-PCNA) sheds light on the mode of association between the two proteins but also revealed that paradoxically, the ubiquitin surface engaged in PCNA interactions was the same as the surface implicated in translesion polymerase binding. This finding implied a degree of flexibility inherent in the Ub-PCNA complex that would allow it to transition into a conformation competent to bind the TLS polymerase. To address the issue of segmental flexibility, we combined multiscale computational modeling and small angle X-ray scattering. This combined strategy revealed alternative positions for ubiquitin to reside on the surface of the PCNA homotrimer, distinct from the position identified in the crystal structure. Two mutations originally identified in genetic screens and known to interfere with TLS are positioned directly beneath the bound ubiquitin in the alternative models. These computationally derived positions, in an ensemble with the crystallographic and flexible positions, provided the best fit to the solution scattering, indicating that ubiquitin dynamically associated with PCNA and is capable of transitioning between a few discrete sites on the PCNA surface. The finding of new docking sites and the positional equilibrium of PCNA-Ub occurring in solution provide unexpected insight into previously unexplained biological observations.


Assuntos
Substâncias Macromoleculares/química , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Conformação Proteica , Ubiquitina/química , Biologia Computacional , Humanos , Espalhamento a Baixo Ângulo
3.
Structure ; 18(3): 281-3, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20223210

RESUMO

In this issue, Raimondi et al. (2010) obtained interesting insights concerning structural flexibilities in the Ras superfamily that are essential to both function retention and specialization by analyzing the deformation patterns from physical models of protein structure and from crystal structures of homologous proteins.

4.
J Am Chem Soc ; 132(9): 2883-5, 2010 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-20155919

RESUMO

Within influenza viral particles, the intricate balance between host cell binding and sialic acid receptor destruction is carefully maintained by the hemagglutinin (HA) and neuraminidase (NA) glycoproteins, respectively. A major outstanding question in influenza biology is the function of a secondary sialic acid binding site on the NA enzyme. Through a series of Brownian dynamics (BD) simulations of the avian N1, human pandemic N2, and currently circulating pandemic (H1)N1 enzymes, we have probed the role of this secondary sialic acid binding site in the avian N1 subtype. Our results suggest that electrostatic interactions at the secondary and primary sites in avian NA may play a key role in the recognition process of the sialic acid receptors and catalytic efficiency of NA. This secondary site appears to facilitate the formation of complexes with the NA protein and the sialic acid receptors, as well as provide HA activity to a lesser extent. Moreover, this site is able to steer inhibitor binding as well, albeit with reduced capacity in N1, and may have potential implications for drug resistance or optimal inhibitor design. Although the secondary sialic acid binding site has previously been shown to be nonconserved in swine NA strains, our investigations of the currently circulating pandemic H1N1 strain of swine origin appears to have retained some of the key features of the secondary sialic acid binding site. Our results indicate possible lowered HA activity for this secondary sialic acid site, which may be an important event in the emergence of the current pandemic strain.


Assuntos
Vírus da Influenza A/enzimologia , Neuraminidase/química , Neuraminidase/metabolismo , Ácidos Siálicos/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Animais , Sítios de Ligação , Aves/virologia , Humanos , Vírus da Influenza A Subtipo H1N1/enzimologia , Modelos Moleculares , Suínos/virologia
5.
Structure ; 15(2): 169-77, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17292835

RESUMO

Normal mode analysis offers an efficient way of modeling the conformational flexibility of protein structures. We use anisotropic displacement parameters from crystallography to test the quality of prediction of both the magnitude and directionality of conformational flexibility. Normal modes from four simple elastic network model potentials and from the CHARMM force field are calculated for a data set of 83 diverse, ultrahigh-resolution crystal structures. While all five potentials provide good predictions of the magnitude of flexibility, all-atom potentials have a clear edge at prediction of directionality, and the CHARMM potential has the highest prediction quality. The low-frequency modes from different potentials are similar, but those computed from the CHARMM potential show the greatest difference from the elastic network models. The comprehensive evaluation demonstrates the costs and benefits of using normal mode potentials of varying complexity.


Assuntos
Simulação por Computador , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica , Anisotropia , Proteínas/química
6.
Structure ; 14(11): 1647-53, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17098190

RESUMO

With the increased popularity of normal mode analyses in structural biology, it is important to carefully consider how to best utilize the results for gaining biological insights without over interpretation. The discussion in this article argues that for the purpose of identifying correlated motions in biomolecules, a case separate from concomitant conformational changes of structural motifs, it is generally important to use a large number of normal modes. This is illustrated through three increasingly complex examples. The simplest case includes two bilinearly coupled harmonic oscillators and serves as a straightforward problem where the important considerations are explicit and transparent. The argument is then generalized to include a system of N-coupled harmonic oscillators and finally to a realistic biomolecule. Although a small number of normal modes are useful for probing structural flexibility, it is clear that a much larger number of modes are required for properly investigating correlated motions in biomolecules.


Assuntos
Proteínas/química , Algoritmos , Motivos de Aminoácidos , Cristalografia , Bases de Dados de Proteínas , Íons , Ligantes , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular , Estrutura Molecular , Oscilometria , Ligação Proteica , Conformação Proteica
7.
Biophys J ; 89(5): 2939-49, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16100266

RESUMO

More than two decades of different types of mode analyses has shown that these techniques can be useful in describing large-scale motions in protein systems. A number of mode analyses are available and include quasiharmonics, classical normal mode, block normal mode, and the elastic network model. Each of these methods has been validated for protein systems and this variety allows researchers to choose the technique that gives the best compromise between computational cost and the level of detail in the calculation. These same techniques have not been systematically tested for nucleic acid systems, however. Given the differences in interactions and structural features between nucleic acid and protein systems, the validity of these techniques in the protein regime cannot be directly translated into validity in the nucleic acid realm. In this work, we investigate the usefulness of the above mode analyses as applied to two RNA systems, i.e., the hammerhead ribozyme and a guanine riboswitch. We show that classical normal-mode analysis can match the magnitude and direction of residue fluctuations from the more detailed, anharmonic technique, quasiharmonic analysis of a molecular dynamics trajectory. The block normal-mode approximation is shown to hold in the nucleic acid systems studied. Only the mode analysis at the lowest level of detail, the elastic network model, produced mixed results in our calculations. We present data that suggest that the elastic network model, with the popular parameterization, is not best suited for systems that do not have a close packed structure; this observation also hints at why the elastic network model has been found to be valid for many globular protein systems. The different behaviors of block normal-mode analysis and the elastic network model, which invoke similar degrees of coarse-graining to the dynamics but use different potentials, suggest the importance of applying a heterogeneous potential function in a robust analysis of the dynamics of biomolecules, especially those that are not closely packed. In addition to these comparisons, we briefly discuss insights into the conformational space available to the hammerhead ribozyme.


Assuntos
Biofísica/métodos , Ácidos Nucleicos/química , Algoritmos , Sítios de Ligação , Biologia Computacional , Simulação por Computador , Guanina/química , Modelos Moleculares , Modelos Estatísticos , Modelos Teóricos , Conformação Molecular , Mutação , Conformação de Ácido Nucleico , Proteínas/química , RNA/química , RNA Catalítico/química , Software , Eletricidade Estática
8.
Biochemistry ; 43(46): 14732-43, 2004 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-15544344

RESUMO

Paradoxically, glycine betaine (N,N,N-trimethyl glycine; GB) in vivo is both an effective osmoprotectant (efficient at increasing cytoplasmic osmolality and growth rate) and a compatible solute (without deleterious effects on biopolymer function, including stability and activity). For GB to be an effective osmoprotectant but not greatly affect biopolymer stability, we predict that it must interact very differently with folded protein surface than with that exposed in unfolding. To test this hypothesis, we quantify the preferential interaction of GB with the relatively uncharged surface exposed in unfolding the marginally stable lacI helix-turn-helix (HTH) DNA binding domain using circular dichroism and with the more highly charged surfaces of folded hen egg white lysozyme (HEWL) and bovine serum albumin (BSA) using all-gravimetric vapor pressure osmometry (VPO) and compare these results with results of VPO studies (Hong et al. (2004), Biochemistry, 43, 14744-14758) of the interaction of GB with polyanionic duplex DNA. For these four biopolymer surfaces, we observe that the extent of exclusion of GB per unit of biopolymer surface area increases strongly with increasing fraction of anionic oxygen (protein carboxylate or DNA phosphate) surface. In addition, GB is somewhat more excluded from the surface exposed in unfolding the lacI HTH and from the folded surface of HEWL than expected from their small fraction of anionic surface, consistent with moderate exclusion of GB from polar amide surface, as predicted by the osmophobic model of protein stability (Bolen and Baskakov (2001) J. Mol. Biol. 310, 955-963). Strong exclusion of GB from anionic surface explains how it can be both an effective osmoprotectant and a compatible solute; analysis of this exclusion yields a lower bound on the hydration of anionic protein carboxylate surface of two layers of water (>or=0.22 H(2)O A(-)(2)).


Assuntos
Betaína/química , Betaína/metabolismo , Modelos Químicos , Ânions/química , Ânions/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopolímeros/química , Biopolímeros/metabolismo , Dicroísmo Circular , Entropia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Sequências Hélice-Volta-Hélice , Repressores Lac , Muramidase/química , Concentração Osmolar , Dobramento de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Soroalbumina Bovina/química , Soluções , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA