Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(9): 1605-1623, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36998158

RESUMO

Microbial assessments of recreational water have traditionally focused on culturing or DNA-based approaches of the planktonic water column, omitting influence from microbe-sediment relationships. Sediment (bed and suspended) has been shown to often harbour levels of bacteria higher than the planktonic phase. The fate of suspended sediment (SS) bacteria is extensively related to transport dynamics (e.g., deposition) of the associated sediment/floc. When hydraulic energy allows, SS will settle, introducing new (potentially pathogenic) organisms to the bed. With turbulence, including waves, currents and swimmers, the risk of human ingestion is elevated due to resuspension of bed sediment and associated microbes. This research used multiplex nanofluidic reverse transcriptase quantitative PCR on RNA of bacteria associated with bed and SS to explore the active bacteria in freshwater shorelines. Bacterial genes of human health concern regarding recreational water use were targeted, such as faecal indicator bacteria (FIB), microbial source tracking genes and virulence factors from waterborne pathogens. Results indicate avian sources (i.e., gulls, geese) to be the largest nonpoint source of FIB associated with sediment in Great Lakes shorelines. This research introduces a novel approach to microbial water quality assessments and enhances our understanding of microbe-sediment dynamics and the quality of freshwater beaches.


Assuntos
Bactérias , Lagos , Animais , Humanos , Bactérias/genética , Qualidade da Água , Gansos , Genes Bacterianos
2.
Sci Total Environ ; 807(Pt 3): 150996, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34656597

RESUMO

The introduction and proliferation of pathogenic organisms in aquatic systems is a serious global issue that consequently leads to economic, financial, and health concerns. Health and safety related to recreational water use is typically monitored through water quality assessments that are outdated and can be misleading. These traditional methods focus on broad taxa groups, provide no insight into the active community or source of contamination, and the sediment compartments (bed and suspended) are often overlooked. To bridge this knowledge gap, our study aimed to 1) examine the metatranscriptome of the microbial community associated with suspended sediment (SS) in freshwater systems; 2) explore the influence of SS in tributaries to the littoral zone of the receiving lake; and 3) compare the SS fraction with previously reported nearshore bed sediment data. Samples were collected seasonally from Lake St. Clair and Lake Erie. Beaches in this region are influenced by both agriculture runoff and continued urban expansion. Results show that both adjacent tributary and beach SS have similar microbial functional diversity and are strongly correlated by site and season. We identified expression of transcripts encoding sequences with similarities to genes involved in nine bacterial infectious disease pathways, including legionellosis (sdhA) and Vibrio cholerae pathogenesis. According to MG-RAST gene categories, lake samples typically showed higher overall expression (p < 0.05) of transcripts with similarities to genes involved in infectious disease pathways compared to the tributaries, with summer upregulated (p < 0.05) compared to fall. Our data suggests SS acts as a strong vector for pathogen transport, making this facet an important area for further research as it pertains to human health regarding recreational water use. To our knowledge, this work is the first to investigate SS in aquatic microbial communities using metatranscriptomic analyses and has significant potential to help address growing issues of microbial contamination impacting freshwater security.


Assuntos
Sedimentos Geológicos , Lagos , Expressão Gênica , Humanos
3.
Chemosphere ; 272: 129873, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33592515

RESUMO

Cyanobacterial blooms and the associated hepatotoxins produced (e.g., microcystins, MCs) create a significant human health risk in freshwater lakes around the world, including Lake Erie. Though various physical and chemical treatment options are utilized, these are costly and their effectiveness decreases when other organics are present. Laboratory studies have identified a remediation option based on a mlr gene operon that can systematically degrade this toxin; however, studies on Lake Erie have been unable to amplify mlr genes from MC-degrading bacteria. These results suggest that either existing primers may be inefficient for broad identification of the mlr genes or that MC degradation genes and/or pathways may vary among bacterial taxa. To investigate the dynamics of the Lake Erie microbial community involved in the degradation of microcystin-LR (MC-LR), a flow-through column experiment using collected beach sand was conducted over a period of six weeks. Increasing concentrations of lake water spiked with MC-LR were continuously delivered to both biotic and abiotic (sterilized) sand columns, with influent and effluent MC-LR concentrations measured by LC-MS/MS. Despite the toxin concentrations far exceeding natural conditions during a bloom event (maximum dosage = 15.4 µg/L), MC-LR was completely removed within 21 h of contact time in the biotic columns. Stimulation of community taxa during the degradation process included Burkholderiaceae, Illumatobacteraceae, Pseudomonadaceae, Rhodocyclaceae and Nitrosomonadaceae. The overall results suggest several critical species may be required for the most complete and effective degradation of MC-LR.


Assuntos
Lagos , Microcistinas , Cromatografia Líquida , Humanos , Toxinas Marinhas , Areia , Espectrometria de Massas em Tandem
4.
Environ Microbiol ; 22(2): 568-583, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31736260

RESUMO

Pathogenic bacteria associated with freshwater ecosystems can pose significant health risks particularly where recreational water use is popular. Common water quality assessments involve quantifying indicator Escherichia coli within the water column but neglect to consider physical and geochemical factors and contributions from the sediment. In this study, we used high-throughput sequencing to investigate sediment microbial communities at four freshwater public beaches in southern Ontario, Canada and analysed community structure, function, and gene expression with relation to geographical characteristics. Our results indicate that beach sediments at the sediment-water interface could serve as potential sources of bacterial contamination under low-energy environments with tightly packed small sediment particles compared with high-energy environments. Further, the absence of pathogens but expression of pathogenic transcripts suggests occurrence of alternate gene acquisition. Pathogenicity at these locations included expression of Salmonella virulence factors, genes involved in pertussis, and antimicrobial resistance. Finally, we introduce a proposed universal bacterial pathogen model to consider the combined and synergistic processes used by these microbes. To our knowledge, this is the first study of its kind to investigate chemolithotrophic activity related to pathogens within bed sediment at freshwater beaches. This work helps advance current understanding of health risks in these environments.


Assuntos
Bactérias/patogenicidade , Praias , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Microbiota/fisiologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Canadá , Ecossistema , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Microbiologia da Água , Qualidade da Água
5.
Microb Ecol ; 74(2): 362-372, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28246922

RESUMO

Open-pit mining of the Athabasca oil sands has generated large volumes of waste termed fluid fine tailings (FFT), stored in tailings ponds. Accumulation of toxic organic substances in the tailings ponds is one of the biggest concerns. Gamma irradiation (GI) treatment could accelerate the biodegradation of toxic organic substances. Hence, this research investigates the response of the microbial consortia in GI-treated FFT materials with an emphasis on changes in diversity and organism-related stimuli. FFT materials from aged and fresh ponds were used in the study under aerobic and anaerobic conditions. Variations in the microbial diversity in GI-treated FFT materials were monitored for 52 weeks and significant stimuli (p < 0.05) were observed. Chemoorganotrophic organisms dominated in fresh and aged ponds and showed increased relative abundance resulting from GI treatment. GI-treated anaerobic FFTaged reported stimulus of organisms with biodegradation potential (e.g., Pseudomonas, Enterobacter) and methylotrophic capabilities (e.g., Syntrophus, Smithella). In comparison, GI-treated anaerobic FFTfresh stimulated Desulfuromonas as the principle genus at 52 weeks. Under aerobic conditions, GI-treated FFTaged showed stimulation of organisms capable of sulfur and iron cycling (e.g., Geobacter). However, GI-treated aerobic FFTfresh showed no stimulus at 52 weeks. This research provides an enhanced understanding of oil sands tailings biogeochemistry and the impacts of GI treatment on microorganisms as an effect for targeting toxic organics. The outcomes of this study highlight the potential for this approach to accelerate stabilization and reclamation end points. Graphical Abstract.


Assuntos
Raios gama , Metagenoma , Consórcios Microbianos , Campos de Petróleo e Gás/microbiologia , Biodegradação Ambiental , Mineração , Lagoas
6.
Sci Total Environ ; 539: 114-124, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26356184

RESUMO

Naphthenic acids (NAs) are persistent compounds that are components of most petroleum, including those found in the Athabasca oil sands. Their presence in freshly processed tailings is of significant environmental concern due to their toxicity to aquatic organisms. Gamma irradiation (GI) was used to reduce the toxicity and concentration of NAs in oil sands process water (OSPW) and fluid fine tailings (FFT). This investigation systematically studied the impact of GI on the biogeochemical development and progressive reduction of toxicity using laboratory incubations of fresh and aged tailings under anoxic and oxic conditions. GI reduced NA concentrations in OSPW by up to 97% in OSPW and in FFT by 85%. The GI-treated FFT exhibited increased rates of biogeochemical change, dependent on the age of the tailings source. Dissolved oxygen (DO) flux was enhanced in GI-treated FFT from fresh and aged source materials, whereas hydrogen sulfide (HS(-)) flux was stimulated only in the fresh FFT. Acute toxicity to Vibrio fischeri was immediately reduced following GI treatment of fresh OSPW. GI treatment followed by 4-week incubation reduced toxicity of aged OSPW to V. fischeri.


Assuntos
Ácidos Carboxílicos/análise , Recuperação e Remediação Ambiental/métodos , Raios gama , Poluentes Químicos da Água/análise , Campos de Petróleo e Gás , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA