Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
JAMA Netw Open ; 7(4): e245678, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38592718

RESUMO

Importance: Ambient air pollution is a worldwide problem, not only related to respiratory and cardiovascular diseases but also to neurodegenerative disorders. Different pathways on how air pollutants could affect the brain are already known, but direct evidence of the presence of ambient particles (or nanoparticles) in the human adult brain is limited. Objective: To examine whether ambient black carbon particles can translocate to the brain and observe their biodistribution within the different brain regions. Design, Setting, and Participants: In this case series a label-free and biocompatible detection technique of nonincandescence-related white light generation was used to screen different regions of biobanked brains of 4 individuals from Belgium with neuropathologically confirmed Alzheimer disease for the presence of black carbon particles. The selected biological specimens were acquired and subsequently stored in a biorepository between April 2013 and April 2017. Black carbon measurements and data analysis were conducted between June 2020 and December 2022. Main Outcomes and Measures: The black carbon load was measured in various human brain regions. A Kruskal-Wallis test was used to compare black carbon loads across these regions, followed by Dunn multiple comparison tests. Results: Black carbon particles were directly visualized in the human brain of 4 individuals (3 women [75%]; mean [SD] age, 86 [13] years). Screening of the postmortem brain regions showed a significantly higher median (IQR) number of black carbon particles present in the thalamus (433.6 [289.5-540.2] particles per mm3), the prefrontal cortex including the olfactory bulb (420.8 [306.6-486.8] particles per mm3), and the hippocampus (364.7 [342.0-448.7] particles per mm3) compared with the cingulate cortex (192.3 [164.2-277.5] particles per mm3), amygdala (217.5 [147.3-244.5] particles per mm3), and the superior temporal gyrus (204.9 [167.9-236.8] particles per mm3). Conclusions and Relevance: This case series provides evidence that ambient air pollution particles are able to translocate to the human brain and accumulate in multiple brain regions involved in cognitive functioning. This phenomenon may contribute to the onset and development of neurodegenerative disorders.


Assuntos
Doença de Alzheimer , Encéfalo , Adulto , Feminino , Humanos , Idoso de 80 Anos ou mais , Distribuição Tecidual , Cognição , Carbono
2.
Environ Res ; 252(Pt 1): 118879, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579996

RESUMO

BACKGROUND: Early life exposure to ambient particulate matter (PM) may negatively affect neurobehavioral development in children, influencing their cognitive, emotional, and social functioning. Here, we report a study on prenatal PM2.5 exposure and neurobehavioral development focusing on different time points in the first years of life. METHODS: This study was part of the ENVIRONAGE birth cohort that follows mother-child pairs longitudinally. First, the Neonatal Behavioral Assessment Scale (NBAS) was employed on 88 newborns aged one to two months to assess their autonomic/physiological regulation, motor organisation, state organisation/regulation, and attention/social interaction. Second, our study included 393 children between the ages of four and six years, for which the Strengths and Difficulties Questionnaire (SDQ) was used to assess the children's emotional problems, hyperactivity, conduct problems, peer relationship, and prosocial behaviour. Prenatal PM2.5 exposure was determined using a high-resolution spatial-temporal method based on the maternal address. Multiple linear and multinomial logistic regression models were used to analyse the relationship between prenatal PM2.5 exposure and neurobehavioral development in newborns and children, respectively. RESULTS: A 5 µg/m³ increase in first-trimester PM2.5 concentration was associated with lower NBAS range of state cluster scores (-6.11%; 95%CI: -12.00 to -0.23%; p = 0.04) in one-to-two-month-old newborns. No other behavioural clusters nor the reflexes cluster were found to be associated with prenatal PM2.5 exposure. Furthermore, a 5 µg/m³ increment in first-trimester PM2.5 levels was linked with higher odds of a child experiencing peer problems (Odds Ratio (OR) = 3.89; 95%CI: 1.39 to 10.87; p = 0.01) at ages four to six. Additionally, a 5 µg/m³ increase in second-trimester PM2.5 concentration was linked to abnormal prosocial behaviour (OR = 0.49; 95%CI: 0.25 to 0.98; p = 0.04) at four to six years old. No associations were found between in utero PM2.5 exposure and hyperactivity or conduct problems. CONCLUSIONS: Our findings suggest that prenatal exposure to PM may impact neurobehavioural development in newborns and preschool children. We identified sensitive time windows during early-to-mid pregnancy, possibly impacting stage changes in newborns and peer problems and prosocial behaviour in children.

3.
Environ Res ; 216(Pt 4): 114828, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36400229

RESUMO

BACKGROUND: DNA methylation programming is sensitive to prenatal life environmental influences, but the impact of maternal exposure to green space on newborns DNA methylation has not been studied yet. METHODS: We conducted a meta-epigenome-wide association study (EWAS) of maternal exposure to green space during gestation with cord blood DNA methylation in two subsets of the ENVIRONAGE cohort (N = 538). Cord blood DNA methylation was measured by Illumina HumanMethylation 450K in one subset (N = 189) and EPICarray in another (N = 349). High (vegetation height>3 m (m)), low (vegetation height<3 m) and total (including both) high-resolution green space exposures during pregnancy were estimated within 100 m and 1000 m distance around maternal residence. In each subset, we sought cytosine-phosphate-guanine (CpG) sites via linear mixed models adjusted on newborns' sex, ethnicity, gestational age, season at delivery, sampling day, maternal parity, age, smoking, education, and estimated blood cell proportions. EWASs results were meta-analysed via fixed-effects meta-analyses. Differentially methylated regions (DMRs) were identified via ENmix-combp and DMRcate algorithms. Sensitivity analyses were additionally adjusted on PM2.5, distance to major roads, urbanicity and neighborhood income. In the 450K subset, cord blood expression of differentially methylated genes was measured by Agilent microarrays and associated with green space. RESULTS: 147 DMRs were identified, 85 of which were still significant upon adjustment for PM2.5, distance to major roads, urbanicity and neighborhood income, including HLA-DRB5, RPTOR, KCNQ1DN, A1BG-AS1, HTR2A, ZNF274, COL11A1 and PRSS36 DMRs. One CpG reached genome-wide significance, while 54 CpGs were suggestive significant (p-values<1e-05). Among them, a CpG, hypermethylated with 100 m buffer total green space, was annotated to PAQR9, whose expression decreased with 1000 m buffer low green space (p-value = 1.45e-05). CONCLUSIONS: Our results demonstrate that maternal exposure to green space during pregnancy is associated with cord blood DNA methylation, mainly at loci organized in regions, in genes playing important roles in neurological development (e.g., HTR2A).


Assuntos
Exposição Materna , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Feminino , Humanos , Recém-Nascido , Epigenoma , Metilação de DNA , Sangue Fetal/metabolismo , Parques Recreativos , Efeitos Tardios da Exposição Pré-Natal/genética , Material Particulado/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Receptores de Progesterona/metabolismo
4.
Front Public Health ; 11: 1333969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38298262

RESUMO

Background/Aim: Human breast milk is the recommended source of nutrition for infants due to its complex composition and numerous benefits, including a decline in infection rates in childhood and a lower risk of obesity. Hence, it is crucial that environmental pollutants in human breast milk are minimized. Exposure to black carbon (BC) particles has adverse effects on health; therefore, this pilot study investigates the presence of these particles in human breast milk. Methods: BC particles from ambient exposure were measured in eight human breast milk samples using a white light generation under femtosecond illumination. The carbonaceous nature of the particles was confirmed with BC fingerprinting. Ambient air pollution exposures (PM2.5, PM10, and NO2) were estimated using a spatial interpolation model based on the maternal residential address. Spearman rank correlation coefficients were obtained to assess the association between human breast milk's BC load and ambient air pollution exposure. Results: BC particles were found in all human breast milk samples. BC loads in human breast milk were strongly and positively correlated with recent (i.e., 1 week) maternal residential NO2 (r = 0.79; p = 0.02) exposure and medium-term (i.e., 1 month) PM2.5 (r = 0.83; p = 0.02) and PM10 (r = 0.93; p = 0.002) exposure. Conclusion: For the first time, we showed the presence of BC particles in human breast milk and found a robust association with ambient air pollution concentrations. Our findings present a pioneering insight into a novel pathway through which combustion-derived air pollution particles can permeate the delicate system of infants.


Assuntos
Poluentes Atmosféricos , Lactente , Feminino , Humanos , Poluentes Atmosféricos/análise , Dióxido de Nitrogênio , Projetos Piloto , Leite Humano/química , Exposição Ambiental/efeitos adversos , Material Particulado/análise , Carbono
5.
Environ Health ; 21(1): 88, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36117180

RESUMO

BACKGROUND: Mitochondria play an important role in the energy metabolism and are susceptible to environmental pollution. Prenatal air pollution exposure has been linked with childhood obesity. Placental mtDNA mutations have been associated with prenatal particulate matter exposure and MT-ND4L10550A>G heteroplasmy has been associated with BMI in adults. Therefore, we hypothesized that in utero PM2.5 exposure is associated with cord blood MT-ND4L10550A>G heteroplasmy and early life growth. In addition, the role of cord blood MT-ND4L10550A>G heteroplasmy in overweight during early childhood is investigated. METHODS: This study included 386 mother-newborn pairs. Outdoor PM2.5 concentrations were determined at the maternal residential address. Cord blood MT-ND4L10550A>G heteroplasmy was determined using Droplet Digital PCR. Associations were explored using logistic regression models and distributed lag linear models. Mediation analysis was performed to quantify the effects of prenatal PM2.5 exposure on childhood overweight mediated by cord blood MT-ND4L10550A>G heteroplasmy. RESULTS: Prenatal PM2.5 exposure was positively associated with childhood overweight during the whole pregnancy (OR = 2.33; 95% CI: 1.20 to 4.51; p = 0.01), which was mainly driven by the second trimester. In addition, prenatal PM2.5 exposure was associated with cord blood MT-ND4L10550A>G heteroplasmy from gestational week 9 - 13. The largest effect was observed in week 10, where a 5 µg/m3 increment in PM2.5 was linked with cord blood MT-ND4L10550A>G heteroplasmy (OR = 0.93; 95% CI: 0.87 to 0.99). Cord blood MT-ND4L10550A>G heteroplasmy was also linked with childhood overweight (OR = 3.04; 95% CI: 1.15 to 7.50; p = 0.02). The effect of prenatal PM2.5 exposure on childhood overweight was mainly direct (total effect OR = 1.18; 95% CI: 0.99 to 1.36; natural direct effect OR = 1.20; 95% CI: 1.01 to 1.36)) and was not mediated by cord blood MT-ND4L10550A>G heteroplasmy. CONCLUSIONS: Cord blood MT-ND4L10550A>G heteroplasmy was linked with childhood overweight. In addition, in utero exposure to PM2.5 during the first trimester of pregnancy was associated with cord blood MT-ND4L10550A>G heteroplasmy in newborns. Our analysis did not reveal any mediation of cord blood MT-ND4L10550A>G heteroplasmy in the association between PM2.5 exposure and childhood overweight.


Assuntos
Material Particulado , Obesidade Infantil , Adulto , Criança , Pré-Escolar , DNA Mitocondrial , Feminino , Heteroplasmia , Humanos , Recém-Nascido , Mitocôndrias/química , Sobrepeso/epidemiologia , Sobrepeso/genética , Material Particulado/efeitos adversos , Material Particulado/análise , Obesidade Infantil/epidemiologia , Obesidade Infantil/genética , Placenta/química , Gravidez
6.
Environ Health ; 21(1): 24, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135544

RESUMO

BACKGROUND: Ambient fine particulate matter (PM < 2.5 µm, PM2.5) is gaining increasing attention as an environmental risk factor for health. The kidneys are considered a particularly vulnerable target to the toxic effects that PM2.5 exerts. Alteration of kidney function may lead to a disrupted homeostasis, affecting disparate tissues in the body. This review intends to summarize all relevant knowledge published between January 2000 and December 2021 on the effects of ambient PM2.5 and the adverse effects on kidney function in adults (≥ 18 years). RESULTS AND DISCUSSION: Studies published in peer-reviewed journals, written in English, regarding the effects of PM2.5 on kidney function and the development and/or exacerbation of kidney disease(s) were included. Of the 587 nonduplicate studies evaluated, 40 were included, comprising of studies on healthy or diagnosed with pre-existing disease (sub)populations. Most of the studies were cohort studies (n = 27), followed by 10 cross-sectional, 1 ecological and 2 time-series studies. One longitudinal study was considered intermediate risk of bias, the other included studies were considered low risk of bias. A large portion of the studies (n = 36) showed that PM2.5 exposure worsened kidney outcome(s) investigated; however, some studies show contradictory results. Measurement of the estimated glomerular filtration rate, for instance, was found to be positively associated (n = 8) as well as negatively associated (n = 4) with PM2.5. LIMITATIONS AND CONCLUSION: The main limitations of the included studies include residual confounding (e.g., smoking) and lack of individual exposure levels. The majority of included studies focused on specific subpopulations, which may limit generalizability. Evidence of the detrimental effects that ambient PM2.5 may exert on kidney function is emerging. However, further investigations are required to determine how and to what extent air pollution, specifically PM2.5, exerts adverse effects on the kidney and alters its function. REGISTRATION: The systematic review protocol was submitted and published by the International Prospective Register of Systematic Reviews (PROSPERO; CRD42020175615 ).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Estudos Transversais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Rim , Estudos Longitudinais , Material Particulado/análise
7.
J Steroid Biochem Mol Biol ; 212: 105942, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34144153

RESUMO

Enhancing the cholesterol turnover in the brain via activation of liver x receptors can restore memory in a mouse model for Alzheimer's disease. The edible Asian brown alga Sargassum fusiforme (Hijiki) contains high amounts of oxysterols such as (3ß, 24ξ)-stigmasta-5, 28-dien-3, 24-diol (24[R, S]-saringosterol) that are a potent liver x receptor agonists. We aimed to find native European seaweed species with contents of 24(R, S)-saringosterol that are comparable to those found in Sargassum fusiforme. Additionally, we hypothesize that seasonal variations modify the amount of 24(R, S)-saringosterol in seaweeds. Sterols and oxysterols were extracted with chloroform/methanol from various seaweed species harvested in the Eastern Scheldt in different seasons between October 2016 and September 2017. Identification and quantification of the lipids was performed by gas chromatography- mass spectrometry and gas chromatography- flame ionization detection. We confirmed that brown algae Undaria pinnatifida harvested in February and Sargassum muticum harvested in October contained the highest amounts of 24(R, S)-saringosterol (32.4 ± 15.25 µg/g, mean ± S.D. and 32.95 ± 2.91 µg/g, respectively) and its precursor fucosterol (1.48 ± 0.11 mg/g), higher than Sargassum fusiforme (20.94 ± 3.00 µg/g, mean ± S.D.), while Ascophyllum nodosum and Fucus vesiculosus and Fucus serratus contained amounts of 24(R, S)-saringosterol (22.09 ± 3.45 µg/g, 18.04 ± 0.52 µg/g and 19.47 ± 9.01 µg/g, mean ± S.D., respectively) comparable to Sargassum fusiforme. In other algae only minor amounts of these sterols were observed. The green algae Ulva lactuca contained only 0.29 mg/g fucosterol and 10.3 µg/g 24 (R, S)-saringosterol, while all investigated red algae did not contain any 24(R, S)-saringosterol or fucosterol. In the Eastern Scheldt algae harvested in September/October delivered the highest yield for 24(R, S)-saringosterol, with the exception of Undaria pinnatifida that showed the highest levels in February. We showed that exposure of lipid extracts of Ulva lactuca to sunlight at room temperature or in the presence of oxygen to UV-C light lead to the quantitative conversion of fucosterol into 24(R, S)-saringosterol. Exposing pure fucosterol to UV-light did not convert any fucosterol into 24(R, S)-saringosterol underscoring the requirement of seaweed constituents in the conversion of fucosterol into 24(R, S)-saringosterol. In conclusion, we showed that brown seaweeds harvested from the Eastern Scheldt contain amounts of 24(R, S)-saringosterol comparable to Sargassum fusiforme, varying per season and showing the highest amounts in spring. In accordance with these observations the amount of 24(R, S)-saringosterol in the brown seaweeds can be modulated by light.


Assuntos
Phaeophyceae/metabolismo , Alga Marinha/metabolismo , Estigmasterol/análogos & derivados , Artefatos , Fatores Biológicos/química , Fatores Biológicos/metabolismo , Clorofila/metabolismo , Isomerismo , Estigmasterol/química , Estigmasterol/metabolismo , Raios Ultravioleta , Ulva/metabolismo
8.
Neural Regen Res ; 15(5): 790-795, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31719238

RESUMO

Edible marine algae, or seaweeds, are a rich source of several bioactive compounds including phytosterols, carotenoids, and polysaccharides. Over the last decades, seaweed-derived constituents turned out to not only reside in the systemic circulation, but are able to cross the blood-brain barrier to exert neuro-active functions both in homeostatic and pathological conditions. Therefore, seaweed-derived constituents have gained increasing interest for their neuro-immunomodulatory and neuroprotective properties, rendering them interesting candidates for the management of several neurodegenerative disorders. In particular seaweed-derived phytosterols gained interest for the treatment of neurodegenerative disorders as they potentiate neuroplasticity, enhance phagocytic clearance of neurotoxic peptides and have anti-inflammatory properties. Though, the anti-inflammatory and anti-oxidative properties of other constituents including carotenoids, phenols and polysaccharides have recently gained more interest. In this review, we provide an overview of a selection of the described neuro-active properties of seaweed-derived constituents with a focus on phytosterols.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA