Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 147: 141-152, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155147

RESUMO

There is a critical need for new mechanism-of-action drugs that reduce the burden of obesity and associated chronic metabolic comorbidities. A potentially novel target to treat obesity and type 2 diabetes is nicotinamide-N-methyltransferase (NNMT), a cytosolic enzyme with newly identified roles in cellular metabolism and energy homeostasis. To validate NNMT as an anti-obesity drug target, we investigated the permeability, selectivity, mechanistic, and physiological properties of a series of small molecule NNMT inhibitors. Membrane permeability of NNMT inhibitors was characterized using parallel artificial membrane permeability and Caco-2 cell assays. Selectivity was tested against structurally-related methyltransferases and nicotinamide adenine dinucleotide (NAD+) salvage pathway enzymes. Effects of NNMT inhibitors on lipogenesis and intracellular levels of metabolites, including NNMT reaction product 1-methylnicotianamide (1-MNA) were evaluated in cultured adipocytes. Effects of a potent NNMT inhibitor on obesity measures and plasma lipid were assessed in diet-induced obese mice fed a high-fat diet. Methylquinolinium scaffolds with primary amine substitutions displayed high permeability from passive and active transport across membranes. Importantly, methylquinolinium analogues displayed high selectivity, not inhibiting related SAM-dependent methyltransferases or enzymes in the NAD+ salvage pathway. NNMT inhibitors reduced intracellular 1-MNA, increased intracellular NAD+ and S-(5'-adenosyl)-l-methionine (SAM), and suppressed lipogenesis in adipocytes. Treatment of diet-induced obese mice systemically with a potent NNMT inhibitor significantly reduced body weight and white adipose mass, decreased adipocyte size, and lowered plasma total cholesterol levels. Notably, administration of NNMT inhibitors did not impact total food intake nor produce any observable adverse effects. These results support development of small molecule NNMT inhibitors as therapeutics to reverse diet-induced obesity and validate NNMT as a viable target to treat obesity and related metabolic conditions. Increased flux of key cellular energy regulators, including NAD+ and SAM, may potentially define the therapeutic mechanism-of-action of NNMT inhibitors.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Dieta Hiperlipídica/efeitos adversos , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Nicotinamida N-Metiltransferase/metabolismo , Obesidade/tratamento farmacológico , Obesidade/enzimologia , Células 3T3 , Adipócitos/efeitos dos fármacos , Animais , Fármacos Antiobesidade/farmacologia , Células CACO-2 , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
J Med Chem ; 60(12): 5015-5028, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28548833

RESUMO

Nicotinamide N-methyltransferase (NNMT) is a fundamental cytosolic biotransforming enzyme that catalyzes the N-methylation of endogenous and exogenous xenobiotics. We have identified small molecule inhibitors of NNMT with >1000-fold range of activity and developed comprehensive structure-activity relationships (SARs) for NNMT inhibitors. Screening of N-methylated quinolinium, isoquinolinium, pyrididium, and benzimidazolium/benzothiazolium analogues resulted in the identification of quinoliniums as a promising scaffold with very low micromolar (IC50 ∼ 1 µM) NNMT inhibition. Computer-based docking of inhibitors to the NNMT substrate (nicotinamide)-binding site produced a robust correlation between ligand-enzyme interaction docking scores and experimentally calculated IC50 values. Predicted binding orientation of the quinolinium analogues revealed selective binding to the NNMT substrate-binding site residues and essential chemical features driving protein-ligand intermolecular interactions and NNMT inhibition. The development of this new series of small molecule NNMT inhibitors direct the future design of lead drug-like inhibitors to treat several metabolic and chronic disease conditions characterized by abnormal NNMT activity.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Sítios de Ligação , Humanos , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Nicotinamida N-Metiltransferase/genética , Nicotinamida N-Metiltransferase/metabolismo , Bibliotecas de Moléculas Pequenas/química
3.
Biochemistry ; 56(6): 824-832, 2017 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-28121423

RESUMO

Nicotinamide N-methyltransferase (NNMT) is an important biotransforming enzyme that catalyzes the transfer of a labile methyl group from the ubiquitous cofactor S-5'-adenosyl-l-methionine (SAM) to endogenous and exogenous small molecules to form methylated end products. NNMT has been implicated in a number of chronic disease conditions, including metabolic disorders, cardiovascular disease, cancer, osteoarthritis, kidney disease, and Parkinson's disease. We have developed a novel noncoupled fluorescence-based methyltransferase assay that allows direct ultrasensitive real-time detection of the NNMT reaction product 1-methylquinolinium. This is the first assay reported to date to utilize fluorescence spectroscopy to directly monitor NNMT product formation and activity in real time. This assay provided accurate kinetic data that allowed detailed comparative analysis of the NNMT reaction mechanism and kinetic parameters. A reaction model based on a random bireactant mechanism produced global curve fits that were most consistent with steady-state initial velocity data collected across an array of substrate concentrations. On the basis of the reaction mechanism, each substrate could independently bind to the NNMT apoenzyme; however, both substrates bound to the complementary binary complexes with an affinity ∼20-fold stronger compared to their binding to the apoenzyme. This reaction mechanism implies either substrate-induced conformational changes or bireactant intermolecular interactions may stabilize the binding of the substrate to the binary complex and formation of the ternary complex. Importantly, this assay could rapidly generate concentration response curves for known NNMT inhibitors, suggesting its applicability for high-throughput screening of chemical libraries to identify novel NNMT inhibitors. Furthermore, our novel assay potentially offers a robust detection technology for use in SAM substrate competition assays for the discovery and development of SAM-dependent methyltransferase inhibitors.


Assuntos
Modelos Moleculares , Nicotinamida N-Metiltransferase/metabolismo , Apoenzimas/antagonistas & inibidores , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Biocatálise/efeitos dos fármacos , Calibragem , Inibidores Enzimáticos/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Limite de Detecção , Metilação/efeitos dos fármacos , Nicotinamida N-Metiltransferase/antagonistas & inibidores , Nicotinamida N-Metiltransferase/química , Nicotinamida N-Metiltransferase/genética , Conformação Proteica , Redobramento de Proteína/efeitos dos fármacos , Compostos de Quinolínio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , S-Adenosilmetionina/metabolismo , Espectrometria de Fluorescência
4.
Radiology ; 229(1): 261-8, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12888621

RESUMO

A technique for demonstrating breast cancers, dual-energy contrast agent-enhanced digital subtraction mammography, was performed in 26 subjects with mammographic or clinical findings that warranted biopsy. The technique consists of high-energy and low-energy digital mammography after administration of iodinated contrast agent. Weighted subtraction of the logarithmic transform of these images is then performed to obtain an image that preferentially shows iodine. Of the 26 subjects, 13 had invasive cancers. Eleven of these tumors enhanced strongly, one enhanced moderately, and one enhanced weakly. The duct in one patient with ductal carcinoma in situ was weakly enhancing. In the other 12 patients, benign tissue enhanced diffusely in two and weakly focally in two. These results indicate that the technique is feasible and worthy of further study.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Carcinoma/diagnóstico por imagem , Meios de Contraste , Iohexol , Mamografia , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Viabilidade , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Mamografia/métodos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA