Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Genomics ; 18(1): 50, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38778374

RESUMO

Friedreich ataxia (FRDA) is a life-threatening hereditary ataxia; its incidence is 1:50,000 individuals in the Caucasian population. A unique therapeutic drug for FRDA, the antioxidant Omaveloxolone, has been recently approved by the US Food and Drug Administration (FDA). FRDA is a multi-systemic neurodegenerative disease; in addition to a progressive neurodegeneration, FRDA is characterized by hypertrophic cardiomyopathy, diabetes mellitus and musculoskeletal deformities. Cardiomyopathy is the predominant cause of premature death. The onset of FRDA typically occurs between the ages of 5 and 15. Given the complexity and heterogeneity of clinical features and the variability of their onset, the identification of biomarkers capable of assessing disease progression and monitoring the efficacy of treatments is essential to facilitate decision making in clinical practice. We conducted an RNA-seq analysis in peripheral blood mononuclear cells from FRDA patients and healthy donors, identifying a signature of small non-coding RNAs (sncRNAs) capable of distinguishing healthy individuals from the majority of FRDA patients. Among the differentially expressed sncRNAs, microRNAs are a class of small non-coding endogenous RNAs that regulate posttranscriptional silencing of target genes. In FRDA plasma samples, hsa-miR-148a-3p resulted significantly upregulated. The analysis of the Receiver Operating Characteristic (ROC) curve, combining the circulating expression levels of hsa-miR-148a-3p and hsa-miR-223-3p (previously identified by our group), revealed an Area Under the Curve (AUC) of 0.86 (95%, Confidence Interval 0.77-0.95; p-value < 0.0001). An in silico prediction analysis indicated that the IL6ST gene, an interesting marker of neuroinflammation in FRDA, is a common target gene of both miRNAs. Our findings support the evaluation of combined expression levels of different circulating miRNAs as potent epi-biomarkers in FRDA. Moreover, we found hsa-miR-148a-3p significantly over-expressed in Intermediate and Late-Onset Friedreich Ataxia patients' group (IOG and LOG, respectively) compared to healthy individuals, indicating it as a putative prognostic biomarker in this pathology.


Assuntos
Biomarcadores , Ataxia de Friedreich , MicroRNAs , Humanos , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Ataxia de Friedreich/sangue , MicroRNAs/genética , MicroRNAs/sangue , Masculino , Biomarcadores/sangue , Prognóstico , Feminino , Adulto , RNA-Seq , Adolescente , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Criança , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Curva ROC , Estudos de Casos e Controles
2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674633

RESUMO

Coronary heart disease (CHD), one of the leading causes of disability and death worldwide, is a multifactorial disease whose early diagnosis is demanding. Thus, biomarkers predicting the occurrence of this pathology are of great importance from a clinical and therapeutic standpoint. By means of a pilot study on peripheral blood cells (PBMCs) of subjects with no coronary lesions (CTR; n = 2) and patients with stable CAD (CAD; n = 2), we revealed 61 differentially methylated regions (DMRs) (18 promoter regions, 24 genes and 19 CpG islands) and 14.997 differentially methylated single CpG sites (DMCs) in CAD patients. MiRNA-seq results displayed a peculiar miRNAs profile in CAD patients with 18 upregulated and 32 downregulated miRNAs (FC ≥ ±1.5, p ≤ 0.05). An integrated analysis of genome-wide DNA methylation and miRNA-seq results indicated a significant downregulation of hsa-miR-200c-3p (FCCAD = −2.97, p ≤ 0.05) associated to the hypermethylation of two sites (genomic coordinates: chr12:7073122-7073122 and chr12:7072599-7072599) located intragenic to the miR-200c/141 genomic locus (encoding hsa-miR-200c-3p) (p-value = 0.009) in CAD patients. We extended the hsa-miR-200c-3p expression study in a larger cohort (CAD = 72, CTR = 24), confirming its reduced expression level in CAD patients (FCCAD = −2; p = 0.02). However, when we analyzed the methylation status of the two CpG sites in the same cohort, we failed to identify significant differences. A ROC curve analysis showed good performance of hsa-miR-200c-3p expression level (AUC = 0.65; p = 0.02) in distinguishing CAD from CTR. Moreover, we found a significant positive correlation between hsa-miR-200c-3p expression and creatinine clearance (R2 = 0.212, p < 0.005, Pearson r = 0.461) in CAD patients. Finally, a phenotypic correlation performed in the CAD group revealed lower hsa-miR-200c-3p expression levels in CAD patients affected by dyslipidemia (+DLP, n = 58) (p < 0.01). These results indicate hsa-miR-200c-3p as potential epi-biomarker for the diagnosis and clinical progression of CAD and highlight the importance of deeper studies on the expression of this miRNA to understand its functional role in coronary artery disease development.


Assuntos
Doença da Artéria Coronariana , Dislipidemias , MicroRNAs , Humanos , Doença da Artéria Coronariana/genética , Regulação para Baixo/genética , Projetos Piloto , Perfilação da Expressão Gênica/métodos , MicroRNAs/metabolismo , Biomarcadores
3.
J Cell Mol Med ; 26(19): 4940-4948, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36073344

RESUMO

Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the novel coronavirus responsible for worldwide coronavirus disease (COVID-19). We previously observed that Angiotensin-converting enzyme 2 (ACE2) and Dipeptidyl peptidase-4 (DPP4) are significantly overexpressed in naso-oropharyngeal swabs (NPS) of COVID-19 patients, suggesting their putative functional role in the disease progression. ACE2 and DPP4 overexpression in COVID-19 patients may be associated to epigenetic mechanism, such as miRNA differential expression. We investigated if hsa-let7b-5p, reported to target both ACE2 and DPP4 transcripts, could be involved in the regulation of these genes. We verified that the inhibition and overexpression of hsa-let7b-5p matched to a modulation of both ACE2 and DPP4 levels. Then, we observed a statistically significant downregulation (FC = -1.5; p < 0.05) of hsa-let7b-5p in the same COVID-19 and control samples of our previous study. This is the first study that shows hsa-let7b-5p low expression in naso-oropharyngeal swabs of COVID-19 patients and demonstrates a functional role of this miR in regulating ACE2 and DPP4 levels. These data suggest the involvement of hsa-let7b-5p in the regulation of genes necessary for SARS-CoV-2 infections and its putative role as a therapeutic target for COVID-19.


Assuntos
COVID-19 , MicroRNAs , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , SARS-CoV-2/genética
4.
Hum Mol Genet ; 31(12): 2010-2022, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35015850

RESUMO

Frataxin (FXN) deficiency is responsible for Friedreich's ataxia (FRDA) in which, besides the characteristic features of spinocerebellar ataxia, two thirds of patients develop hypertrophic cardiomyopathy that often progresses to heart failure and premature death. Different mechanisms might underlie FRDA pathogenesis. Among them, the role of miRNAs deserves investigations. We carried out an miRNA PCR-array analysis of plasma samples of early-, intermediate- and late-onset FRDA groups, defining a set of 30 differentially expressed miRNAs. Hsa-miR223-3p is the only miRNA shared between the three patient groups and appears upregulated in all of them. The up-regulation of hsa-miR223-3p was further validated in all enrolled patients (n = 37, Fc = +2.3; P < 0.0001). Using a receiver operating characteristic curve analysis, we quantified the predictive value of circulating hsa-miR223-3p for FRDA, obtaining an area under the ROC curve value of 0.835 (P < 0.0001) for all patients. Interestingly, we found a significant positive correlation between hsa-miR223-3p expression and cardiac parameters in typical FRDA patients (onset < 25 years). Moreover, a significant negative correlation between hsa-miR223-3p expression and HAX-1 (HCLS1-associated protein X-1) at mRNA and protein level was observed in all FRDA patients. In silico analyses suggested HAX-1 as a target gene of hsa-miR223-3p. Accordingly, we report that HAX-1 is negatively regulated by hsa-miR223-3p in cardiomyocytes (AC16) and neurons (SH-SY5Y), which are critically affected cell types in FRDA. This study describes for the first time the association between hsa-miR223-3p and HAX-1 expression in FRDA, thus supporting a potential role of this microRNA as non-invasive epigenetic biomarker for FRDA.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Ataxia de Friedreich , MicroRNAs , Neuroblastoma , Proteínas Adaptadoras de Transdução de Sinal/genética , Ataxia de Friedreich/patologia , Humanos , MicroRNAs/sangue , Miócitos Cardíacos/metabolismo , Neuroblastoma/metabolismo , RNA Mensageiro/genética
5.
Genes (Basel) ; 12(6)2021 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-34205376

RESUMO

Primary prevention is crucial for coronary heart disease (CAD) and the identification of new reliable biomarkers might help risk stratification or predict adverse coronary events. Alternative splicing (AS) is a less investigated genetic factors implicated in CAD etiology. We performed an RNA-seq study on PBMCs from CAD patients and control subjects (CTR) and observed 113 differentially regulated AS events (24 up and 89 downregulated) in 86 genes. The RECK (Reversion-inducing-cysteine-rich protein with Kazal motifs) gene was further analyzed in a larger case study (24 CTR subjects, 72 CAD and 32 AMI patients) for its Splicing-Index FC (FC = -2.64; p = 0.0217), the AS event involving an exon (exon 18), and its role in vascular inflammation and remodeling. We observed a significant downregulation of Long RECK splice variant (containing exon 18) in PBMCs of AMI compared to CTR subjects (FC = -3.3; p < 0.005). Interestingly, the Short RECK splice variant (lacking exon 18) was under-expressed in AMI compared to both CTR (FC = -4.5; p < 0.0001) and CAD patients (FC = -4.2; p < 0.0001). A ROC curve, constructed combining Long and Short RECK expression data, shows an AUC = 0.81 (p < 0.001) to distinguish AMI from stable CAD patients. A significant negative correlation between Long RECK and triglycerides in CTR group and a positive correlation in the AMI group was found. The combined evaluation of Long and Short RECK expression levels is a potential genomic biomarker for the discrimination of AMI from CAD patients. Our results underline the relevance of deeper studies on the expression of these two splice variants to elucidate their functional role in CAD development and progression.


Assuntos
Processamento Alternativo , Doença da Artéria Coronariana/genética , Proteínas Ligadas por GPI/genética , Infarto do Miocárdio/genética , Idoso , Biomarcadores/metabolismo , Células Cultivadas , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/patologia , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Projetos Piloto
6.
Heliyon ; 6(10): e05143, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33024851

RESUMO

We collect the nasopharyngeal and oropharyngeal swabs of 63 subjects with severe symptoms or contacts with COVID-19 confirmed cases to perform a pilot-study aimed to verify the "in situ" expression of SARS-CoV-2 host invasion genes (ACE2, TMPRSS2, PCSK3, EMILIN1, EMILIN2, MMRN1, MMRN2, DPP4). ACE2 (FC = +1.88, p ≤ 0.05) and DPP4 (FC = +3, p < 0.01) genes showed a significant overexpression in COVID-19 patients. ACE2 and DPP4 expression levels had a good performance (AUC = 0.75; p < 0.001) in distinguishing COVID-19 patients from negative subjects. Interestingly, we found a significant positive association of ACE2 mRNA and PCSK3, EMILIN1, MMRN1 and MMRN2 expression and of DPP4 mRNA and EMILIN2 expression only in COVID-19 patients. Noteworthy, a subgroup of severe COVID-19 (n = 7) patients, showed significant high level of ACE2 mRNA and another subgroup of less severe COVID-19 patients (n = 6) significant raised DPP4 levels. These results indicate that a group of SARS-CoV-2 host invasion genes are functionally related in COVID-19 patients and suggests that ACE2 and DPP4 expression level could act as genomic biomarkers. Moreover, at the best of our knowledge, this is the first study that shows an elevated DPP4 expression in naso- and oropharyngeal swabs of COVID-19 patient thus suggesting a functional role of DPP4 in SARS-CoV-2 infections.

7.
Hum Mol Genet ; 29(3): 471-482, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31943004

RESUMO

Frataxin deficiency, responsible for Friedreich's ataxia (FRDA), is crucial for cell survival since it critically affects viability of neurons, pancreatic beta cells and cardiomyocytes. In FRDA, the heart is frequently affected with typical manifestation of hypertrophic cardiomyopathy, which can progress to heart failure and cause premature death. A microarray analysis performed on FRDA patient's lymphoblastoid cells stably reconstituted with frataxin, indicated HS-1-associated protein X-1 (HAX-1) as the most significantly upregulated transcript (FC = +2, P < 0.0006). quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) and western blot analysis performed on (I) HEK293 stably transfected with empty vector compared to wild-type frataxin and (II) lymphoblasts from FRDA patients show that low frataxin mRNA and protein expression correspond to reduced levels of HAX-1. Frataxin overexpression and silencing were also performed in the AC16 human cardiomyocyte cell line. HAX-1 protein levels are indeed regulated through frataxin modulation. Moreover, correlation between frataxin and HAX-1 was further evaluated in peripheral blood mononuclear cells (PBMCs) from FRDA patients and from non-related healthy controls. A regression model for frataxin which included HAX-1, group membership and group* HAX-1 interaction revealed that frataxin and HAX-1 are associated both at mRNA and protein levels. Additionally, a linked expression of FXN, HAX-1 and antioxidant defence proteins MnSOD and Nrf2 was observed both in PBMCs and AC16 cardiomyocytes. Our results suggest that HAX-1 could be considered as a potential biomarker of cardiac disease in FRDA and the evaluation of its expression might provide insights into its pathogenesis as well as improving risk stratification strategies.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatia Hipertrófica/patologia , Ataxia de Friedreich/complicações , Regulação da Expressão Gênica , Insuficiência Cardíaca/patologia , Proteínas de Ligação ao Ferro/metabolismo , Miócitos Cardíacos/patologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Cardiomiopatia Hipertrófica/etiologia , Cardiomiopatia Hipertrófica/metabolismo , Feminino , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Humanos , Proteínas de Ligação ao Ferro/genética , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/patologia , Masculino , Pessoa de Meia-Idade , Miócitos Cardíacos/metabolismo , Adulto Jovem , Frataxina
8.
PLoS One ; 14(5): e0216363, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31059534

RESUMO

Coronary artery disease (CAD) and acute myocardial infarction (AMI) are the leading causes of death worldwide. Since only a subset of CAD patients develops myocardial infarction, it is likely that unique factors predispose to AMI. Circulating microRNAs represent diagnostic powerful biomarkers for detection of heart injuries and patients' risk stratification. Using an array-based approach, the expression of 84 circulating miRNAs was analyzed in plasma of pooled stable CAD patients (CAD; n = 5) and unstable CAD patients (AMI_T0; n = 5) enrolled within 24 hours from an AMI event. The array experiments showed 27 miRNAs differentially expressed with a two-fold up- or down-regulation (10 up- and 17 down-regulated miRNAs). Among them, miR-423-5p dis-regulation was confirmed in a larger case study (n = 99). Circulating miR-423-5p resulted to be significantly down-regulated within 24 hours from the AMI event (FC = -2, p≤0.05). Interestingly, miR-423-5p expression resulted to be increased (FC = +2; p≤0.005) in a subgroup of the same AMI patients (AMI_T1; n = 11) analyzed after 6 months from the acute event. We extended miR-423-5p expression study on PBMCs (peripheral blood mononuclear cells), confirming also in this tissue its up-regulation at 6 months post-AMI. Receiver operating characteristic analyses (ROC) were performed to detect the power of miR-423-5p to discriminate stable and unstable CAD. In plasma, miR-423-5p expression accurately distinguishes stable and unstable CAD patients (AUC = 0.7143, p≤0.005). Interestingly, the highest discriminatory value (AUC = 0.8529 p≤0.0005) was identified in blood cells, where miR-423-5p expression is able to differentiate unstable CAD patients during an acute event (AMI_T0) from those at six months post-AMI (AMI_T1). Furthermore, cellular miR-423-5p may discriminate also stable CAD patients from unstable CAD patients after six months post-AMI (AUC = 0.7355 p≤0.05). The results of this pilot-study suggest that miR-423-5p expression level both in plasma and blood cells, could represent a new promising biomarker for risk stratification of CAD patients.


Assuntos
Doença da Artéria Coronariana/diagnóstico , MicroRNAs/sangue , Doença da Artéria Coronariana/sangue , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/sangue , Projetos Piloto , Curva ROC , Medição de Risco , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA