Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012063, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466776

RESUMO

BACKGROUND: Epigenome-wide association studies (EWAS) have identified CpG sites associated with HIV infection in blood cells in bulk, which offer limited knowledge of cell-type specific methylation patterns associated with HIV infection. In this study, we aim to identify differentially methylated CpG sites for HIV infection in immune cell types: CD4+ T-cells, CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes. METHODS: Applying a computational deconvolution method, we performed a cell-type based EWAS for HIV infection in three independent cohorts (Ntotal = 1,382). DNA methylation in blood or in peripheral blood mononuclear cells (PBMCs) was profiled by an array-based method and then deconvoluted by Tensor Composition Analysis (TCA). The TCA-computed CpG methylation in each cell type was first benchmarked by bisulfite DNA methylation capture sequencing in a subset of the samples. Cell-type EWAS of HIV infection was performed in each cohort separately and a meta-EWAS was conducted followed by gene set enrichment analysis. RESULTS: The meta-analysis unveiled a total of 2,021 cell-type unique significant CpG sites for five inferred cell types. Among these inferred cell-type unique CpG sites, the concordance rate in the three cohorts ranged from 96% to 100% in each cell type. Cell-type level meta-EWAS unveiled distinct patterns of HIV-associated differential CpG methylation, where 74% of CpG sites were unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the largest number of unique HIV-associated CpG sites (N = 1,624) compared to any other cell type. Genes harboring significant CpG sites are involved in immunity and HIV pathogenesis (e.g. CD4+ T-cells: NLRC5, CX3CR1, B cells: IFI44L, NK cells: IL12R, monocytes: IRF7), and in oncogenesis (e.g. CD4+ T-cells: BCL family, PRDM16, monocytes: PRDM16, PDCD1LG2). HIV-associated CpG sites were enriched among genes involved in HIV pathogenesis and oncogenesis that were enriched among interferon-α and -γ, TNF-α, inflammatory response, and apoptotic pathways. CONCLUSION: Our findings uncovered computationally inferred cell-type specific modifications in the host epigenome for people with HIV that contribute to the growing body of evidence regarding HIV pathogenesis.


Assuntos
Metilação de DNA , Infecções por HIV , Humanos , Epigenoma , Epigênese Genética , Leucócitos Mononucleares , Infecções por HIV/genética , Ilhas de CpG , Carcinogênese/genética , Estudo de Associação Genômica Ampla/métodos , Peptídeos e Proteínas de Sinalização Intracelular/genética
2.
bioRxiv ; 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36993343

RESUMO

Epigenome-wide association studies (EWAS) of heterogenous blood cells have identified CpG sites associated with chronic HIV infection, which offer limited knowledge of cell-type specific methylation patterns associated with HIV infection. Applying a computational deconvolution method validated by capture bisulfite DNA methylation sequencing, we conducted a cell type-based EWAS and identified differentially methylated CpG sites specific for chronic HIV infection among five immune cell types in blood: CD4+ T-cells, CD8+ T-cells, B cells, Natural Killer (NK) cells, and monocytes in two independent cohorts (N total =1,134). Differentially methylated CpG sites for HIV-infection were highly concordant between the two cohorts. Cell-type level meta-EWAS revealed distinct patterns of HIV-associated differential CpG methylation, where 67% of CpG sites were unique to individual cell types (false discovery rate, FDR <0.05). CD4+ T-cells had the largest number of HIV-associated CpG sites (N=1,472) compared to any other cell type. Genes harboring statistically significant CpG sites are involved in immunity and HIV pathogenesis (e.g. CX3CR1 in CD4+ T-cells, CCR7 in B cells, IL12R in NK cells, LCK in monocytes). More importantly, HIV-associated CpG sites were overrepresented for hallmark genes involved in cancer pathology ( FDR <0.05) (e.g. BCL family, PRDM16, PDCD1LGD, ESR1, DNMT3A, NOTCH2 ). HIV-associated CpG sites were enriched among genes involved in HIV pathogenesis and oncogenesis such as Kras-signaling, interferon-α and -γ, TNF-α, inflammatory, and apoptotic pathways. Our findings are novel, uncovering cell-type specific modifications in the host epigenome for people with HIV that contribute to the growing body of evidence regarding pathogen-induced epigenetic oncogenicity, specifically on HIV and its comorbidity with cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA