Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 5(3): lqad068, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37435358

RESUMO

Cellular identity during development is under the control of transcription factors that form gene regulatory networks. However, the transcription factors and gene regulatory networks underlying cellular identity in the human adult pancreas remain largely unexplored. Here, we integrate multiple single-cell RNA-sequencing datasets of the human adult pancreas, totaling 7393 cells, and comprehensively reconstruct gene regulatory networks. We show that a network of 142 transcription factors forms distinct regulatory modules that characterize pancreatic cell types. We present evidence that our approach identifies regulators of cell identity and cell states in the human adult pancreas. We predict that HEYL, BHLHE41 and JUND are active in acinar, beta and alpha cells, respectively, and show that these proteins are present in the human adult pancreas as well as in human induced pluripotent stem cell (hiPSC)-derived islet cells. Using single-cell transcriptomics, we found that JUND represses beta cell genes in hiPSC-alpha cells. BHLHE41 depletion induced apoptosis in primary pancreatic islets. The comprehensive gene regulatory network atlas can be explored interactively online. We anticipate our analysis to be the starting point for a more sophisticated dissection of how transcription factors regulate cell identity and cell states in the human adult pancreas.

2.
Cell Stem Cell ; 29(9): 1346-1365.e10, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36055191

RESUMO

A hallmark of primate postimplantation embryogenesis is the specification of extraembryonic mesoderm (EXM) before gastrulation, in contrast to rodents where this tissue is formed only after gastrulation. Here, we discover that naive human pluripotent stem cells (hPSCs) are competent to differentiate into EXM cells (EXMCs). EXMCs are specified by inhibition of Nodal signaling and GSK3B, are maintained by mTOR and BMP4 signaling activity, and their transcriptome and epigenome closely resemble that of human and monkey embryo EXM. EXMCs are mesenchymal, can arise from an epiblast intermediate, and are capable of self-renewal. Thus, EXMCs arising via primate-specific specification between implantation and gastrulation can be modeled in vitro. We also find that most of the rare off-target cells within human blastoids formed by triple inhibition (Kagawa et al., 2021) correspond to EXMCs. Our study impacts our ability to model and study the molecular mechanisms of early human embryogenesis and related defects.


Assuntos
Células-Tronco Pluripotentes , Animais , Diferenciação Celular , Embrião de Mamíferos , Camadas Germinativas , Humanos , Mesoderma , Primatas
3.
Nat Cell Biol ; 24(6): 858-871, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35697783

RESUMO

Human naive pluripotent stem cells have unrestricted lineage potential. Underpinning this property, naive cells are thought to lack chromatin-based lineage barriers. However, this assumption has not been tested. Here we define the chromatin-associated proteome, histone post-translational modifications and transcriptome of human naive and primed pluripotent stem cells. Our integrated analysis reveals differences in the relative abundance and activities of distinct chromatin modules. We identify a strong enrichment of polycomb repressive complex 2 (PRC2)-associated H3K27me3 in the chromatin of naive pluripotent stem cells and H3K27me3 enrichment at promoters of lineage-determining genes, including trophoblast regulators. PRC2 activity acts as a chromatin barrier restricting the differentiation of naive cells towards the trophoblast lineage, whereas inhibition of PRC2 promotes trophoblast-fate induction and cavity formation in human blastoids. Together, our results establish that human naive pluripotent stem cells are not epigenetically unrestricted, but instead possess chromatin mechanisms that oppose the induction of alternative cell fates.


Assuntos
Células-Tronco Pluripotentes , Complexo Repressor Polycomb 2 , Diferenciação Celular/genética , Cromatina/genética , Histonas/genética , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Trofoblastos/metabolismo
4.
Genome Biol ; 22(1): 302, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724962

RESUMO

BACKGROUND: Precise gene dosage of the X chromosomes is critical for normal development and cellular function. In mice, XX female somatic cells show transcriptional X chromosome upregulation of their single active X chromosome, while the other X chromosome is inactive. Moreover, the inactive X chromosome is reactivated during development in the inner cell mass and in germ cells through X chromosome reactivation, which can be studied in vitro by reprogramming of somatic cells to pluripotency. How chromatin processes and gene regulatory networks evolved to regulate X chromosome dosage in the somatic state and during X chromosome reactivation remains unclear. RESULTS: Using genome-wide approaches, allele-specific ATAC-seq and single-cell RNA-seq, in female embryonic fibroblasts and during reprogramming to pluripotency, we show that chromatin accessibility on the upregulated mammalian active X chromosome is increased compared to autosomes. We further show that increased accessibility on the active X chromosome is erased by reprogramming, accompanied by erasure of transcriptional X chromosome upregulation and the loss of increased transcriptional burst frequency. In addition, we characterize gene regulatory networks during reprogramming and X chromosome reactivation, revealing changes in regulatory states. Our data show that ZFP42/REX1, a pluripotency-associated gene that evolved specifically in placental mammals, targets multiple X-linked genes, suggesting an evolutionary link between ZFP42/REX1, X chromosome reactivation, and pluripotency. CONCLUSIONS: Our data reveal the existence of intrinsic compensatory mechanisms that involve modulation of chromatin accessibility to counteract X-to-Autosome gene dosage imbalances caused by evolutionary or in vitro X chromosome loss and X chromosome inactivation in mammalian cells.


Assuntos
Cromatina/metabolismo , Inativação do Cromossomo X , Alelos , Aneuploidia , Animais , Reprogramação Celular/genética , Redes Reguladoras de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/metabolismo , Transcrição Gênica , Cromossomo X
5.
Front Cell Dev Biol ; 7: 169, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31552244

RESUMO

Dosage compensation between XX female and XY male cells is achieved by a process known as X chromosome inactivation (XCI) in mammals. XCI is initiated early during development in female cells and is subsequently stably maintained in most somatic cells. Despite its stability, the robust transcriptional silencing of XCI is reversible, in the embryo and also in a number of reprogramming settings. Although XCI has been intensively studied, the dynamics, factors, and mechanisms of X chromosome reactivation (XCR) remain largely unknown. In this review, we discuss how new sequencing technologies and reprogramming approaches have enabled recent advances that revealed the timing of transcriptional activation during XCR. We also discuss the factors and chromatin features that might be important to understand the dynamics and mechanisms of the erasure of transcriptional gene silencing on the inactive X chromosome (Xi).

6.
Genome Res ; 29(10): 1659-1672, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31515287

RESUMO

Induction and reversal of chromatin silencing is critical for successful development, tissue homeostasis, and the derivation of induced pluripotent stem cells (iPSCs). X-Chromosome inactivation (XCI) and reactivation (XCR) in female cells represent chromosome-wide transitions between active and inactive chromatin states. Although XCI has long been studied, providing important insights into gene regulation, the dynamics and mechanisms underlying the reversal of stable chromatin silencing of X-linked genes are much less understood. Here, we use allele-specific transcriptomics to study XCR during mouse iPSC reprogramming in order to elucidate the timing and mechanisms of chromosome-wide reversal of gene silencing. We show that XCR is hierarchical, with subsets of genes reactivating early, late, and very late during reprogramming. Early genes are activated before the onset of late pluripotency genes activation. Early genes are located genomically closer to genes that escape XCI, unlike genes reactivating late. Early genes also show increased pluripotency transcription factor (TF) binding. We also reveal that histone deacetylases (HDACs) restrict XCR in reprogramming intermediates and that the severe hypoacetylation state of the inactive X Chromosome (Xi) persists until late reprogramming stages. Altogether, these results reveal the timing of transcriptional activation of monoallelically repressed genes during iPSC reprogramming, and suggest that allelic activation involves the combined action of chromatin topology, pluripotency TFs, and chromatin regulators. These findings are important for our understanding of gene silencing, maintenance of cell identity, reprogramming, and disease.


Assuntos
Reprogramação Celular/genética , Células-Tronco Pluripotentes Induzidas/citologia , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Animais , Cromatina/genética , Feminino , Inativação Gênica , Genes Ligados ao Cromossomo X/genética , Histona Desacetilases/genética , Camundongos , Ativação Transcricional/genética , Cromossomo X/genética
7.
J Cell Sci ; 132(20)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31519808

RESUMO

Reprogramming to induced pluripotency induces the switch of somatic cell identity to induced pluripotent stem cells (iPSCs). However, the mediators and mechanisms of reprogramming remain largely unclear. To elucidate the mediators and mechanisms of reprogramming, we used a siRNA-mediated knockdown approach for selected candidate genes during the conversion of somatic cells into iPSCs. We identified Tox4 as a novel factor that modulates cell fate through an assay that determined the efficiency of iPSC reprogramming. We found that Tox4 is needed early in reprogramming to efficiently generate early reprogramming intermediates, irrespective of the reprogramming conditions used. Tox4 enables proper exogenous reprogramming factor expression, and the closing and opening of putative somatic and pluripotency enhancers early during reprogramming, respectively. We show that the TOX4 protein assembles into a high molecular form. Moreover, Tox4 is also required for the efficient conversion of fibroblasts towards the neuronal fate, suggesting a broader role of Tox4 in modulating cell fate. Our study reveals Tox4 as a novel transcriptional modulator of cell fate that mediates reprogramming from the somatic state to the pluripotent and neuronal fate.This article has an associated First Person interview with the first author of the paper.


Assuntos
Reprogramação Celular , Fibroblastos/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Linhagem Celular , Fibroblastos/citologia , Proteínas de Grupo de Alta Mobilidade/genética , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Células-Tronco Neurais/citologia
8.
Stem Cell Reports ; 12(2): 333-350, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30639215

RESUMO

Reprogramming female mouse somatic cells into induced pluripotent stem cells (iPSCs) leads to X-chromosome reactivation. The extent to which increased X-chromosome dosage (X-dosage) in female iPSCs compared with male iPSCs leads to differences in the properties of iPSCs is still unclear. We show that chromatin accessibility in mouse iPSCs is modulated by X-dosage. Specific sets of transcriptional regulator motifs are enriched in chromatin with increased accessibility in XX or XY iPSCs. The transcriptome, growth and pluripotency exit are also modulated by X-dosage in iPSCs. To understand how increased X-dosage modulates the properties of mouse pluripotent stem cells, we used heterozygous deletions of the X-linked gene Dusp9. We show that X-dosage regulates the transcriptome, open chromatin landscape, growth, and pluripotency exit largely independently of global DNA methylation. Our results provide insights into how gene dosage modulates the epigenetic and genetic mechanisms that regulate cell identity.


Assuntos
Metilação de DNA/genética , Dosagem de Genes/genética , Células-Tronco Pluripotentes/fisiologia , Cromossomo X/genética , Animais , Linhagem Celular , Reprogramação Celular/genética , Cromatina/genética , Fosfatases de Especificidade Dupla/genética , Epigênese Genética/genética , Epigenômica/métodos , Feminino , Células-Tronco Pluripotentes Induzidas/fisiologia , Masculino , Camundongos , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Transcriptoma/genética
9.
Epigenet Insights ; 11: 2516865718802931, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30443643

RESUMO

How the epigenome of one cell type is remodeled during reprogramming into another unrelated type of cell remains unclear. Overexpression of transcription factors in somatic cells enables the induction of induced pluripotent stem cells (iPSCs). This process entails genome-wide remodeling of DNA methylation, chromatin, and transcription. Recent work suggests that the number of active X chromosomes present in a cell influences remodeling of DNA methylation during somatic cell reprogramming to mouse iPSCs. Female iPSCs with 2 active X chromosomes display global DNA hypomethylation, whereas male XY iPSCs show DNA methylation levels similar to the somatic cells they are derived from. Global DNA methylation erasure in female iPSCs takes place genome-wide and involves repression of DNA methyltransferases. However, on loss of one X chromosome, female iPSCs acquire a DNA methylation landscape resembling that of XY iPSCs. Therefore, it is the X chromosome dosage that dictates global DNA methylation levels in iPSCs. Here, we discuss the evidence that links X chromosome dosage with the regulation of DNA methylation in pluripotent stem cells. We focus on iPSCs reprogramming studies, where X chromosome status is a novel factor impacting our understanding of epigenetic remodeling.

10.
Stem Cell Reports ; 10(5): 1537-1550, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29681539

RESUMO

A dramatic difference in global DNA methylation between male and female cells characterizes mouse embryonic stem cells (ESCs), unlike somatic cells. We analyzed DNA methylation changes during reprogramming of male and female somatic cells and in resulting induced pluripotent stem cells (iPSCs). At an intermediate reprogramming stage, somatic and pluripotency enhancers are targeted for partial methylation and demethylation. Demethylation within pluripotency enhancers often occurs at ESC binding sites of pluripotency transcription factors. Late in reprogramming, global hypomethylation is induced in a female-specific manner. Genome-wide hypomethylation in female cells affects many genomic landmarks, including enhancers and imprint control regions, and accompanies the reactivation of the inactive X chromosome. The loss of one of the two X chromosomes in propagating female iPSCs is associated with genome-wide methylation gain. Collectively, our findings highlight the dynamic regulation of DNA methylation at enhancers during reprogramming and reveal that X chromosome dosage dictates global DNA methylation levels in iPSCs.


Assuntos
Reprogramação Celular/genética , Cromossomos de Mamíferos/genética , Metilação de DNA/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Cromossomo X/genética , Animais , Sítios de Ligação , Ilhas de CpG/genética , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos/genética , Feminino , Genoma , Impressão Genômica , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Camundongos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA