Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240111

RESUMO

Though the bulk of the COVID-19 pandemic is behind, the search for effective and safe anti-SARS-CoV-2 drugs continues to be relevant. A highly pursued approach for antiviral drug development involves targeting the viral spike (S) protein of SARS-CoV-2 to prevent its attachment to the cellular receptor ACE2. Here, we exploited the core structure of polymyxin B, a naturally occurring antibiotic, to design and synthesize unprecedented peptidomimetics (PMs), intended to target contemporarily two defined, non-overlapping regions of the S receptor-binding domain (RBD). Monomers 1, 2, and 8, and heterodimers 7 and 10 bound to the S-RBD with micromolar affinity in cell-free surface plasmon resonance assays (KD ranging from 2.31 µM to 2.78 µM for dimers and 8.56 µM to 10.12 µM for monomers). Although the PMs were not able to fully protect cell cultures from infection with authentic live SARS-CoV-2, dimer 10 exerted a minimal but detectable inhibition of SARS-CoV-2 entry in U87.ACE2+ and A549.ACE2.TMPRSS2+ cells. These results validated a previous modeling study and provided the first proof-of-feasibility of using medium-sized heterodimeric PMs for targeting the S-RBD. Thus, heterodimers 7 and 10 may serve as a lead for the development of optimized compounds, which are structurally related to polymyxin, with improved S-RBD affinity and anti-SARS-CoV-2 potential.


Assuntos
COVID-19 , Peptidomiméticos , Humanos , SARS-CoV-2 , Peptidomiméticos/farmacologia , Sítios de Ligação , Enzima de Conversão de Angiotensina 2/química , Polimixinas , Pandemias , Ligação Proteica
2.
EBioMedicine ; 92: 104608, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37224768

RESUMO

BACKGROUND: SARS-CoV-2 is a single-stranded positive-sense RNA virus. Several negative-sense SARS-CoV-2 RNA species, both full-length genomic and subgenomic, are produced transiently during viral replication. Methodologies for rigorously characterising cell tropism and visualising ongoing viral replication at single-cell resolution in histological sections are needed to assess the virological and pathological phenotypes of future SARS-CoV-2 variants. We aimed to provide a robust methodology for examining the human lung, the major target organ of this RNA virus. METHODS: A prospective cohort study took place at the University Hospitals Leuven in Leuven, Belgium. Lung samples were procured postmortem from 22 patients who died from or with COVID-19. Tissue sections were fluorescently stained with the ultrasensitive single-molecule RNA in situ hybridisation platform of RNAscope combined with immunohistochemistry followed by confocal imaging. FINDINGS: We visualised perinuclear RNAscope signal for negative-sense SARS-CoV-2 RNA species in ciliated cells of the bronchiolar epithelium of a patient who died with COVID-19 in the hyperacute phase of the infection, and in ciliated cells of a primary culture of human airway epithelium that had been infected experimentally with SARS-CoV-2. In patients who died between 5 and 13 days after diagnosis of the infection, we detected RNAscope signal for positive-sense but not for negative-sense SARS-CoV-2 RNA species in pneumocytes, macrophages, and among debris in the alveoli. SARS-CoV-2 RNA levels decreased after a disease course of 2-3 weeks, concomitant with a histopathological change from exudative to fibroproliferative diffuse alveolar damage. Taken together, our confocal images illustrate the complexities stemming from traditional approaches in the literature to characterise cell tropism and visualise ongoing viral replication solely by the surrogate parameters of nucleocapsid-immunoreactive signal or in situ hybridisation for positive-sense SARS-CoV-2 RNA species. INTERPRETATION: Confocal imaging of human lung sections stained fluorescently with commercially available RNAscope probes for negative-sense SARS-CoV-2 RNA species enables the visualisation of viral replication at single-cell resolution during the acute phase of the infection in COVID-19. This methodology will be valuable for research on future SARS-CoV-2 variants and other respiratory viruses. FUNDING: Max Planck Society, Coronafonds UZ/KU Leuven, European Society for Organ Transplantation.


Assuntos
COVID-19 , Humanos , Pulmão , Estudos Prospectivos , RNA Viral , SARS-CoV-2 , RNA Subgenômico
3.
Viruses ; 15(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112973

RESUMO

Individuals with Down syndrome (DS) are more prone to develop severe respiratory tract infections. Although a RSV infection has a high clinical impact and severe outcome in individuals with DS, no vaccine nor effective therapeutics are available. Any research into infection pathophysiology or prophylactic and therapeutic antiviral strategies in the specific context of DS would greatly benefit this patient population, but currently such relevant animal models are lacking. This study aimed to develop and characterize the first mouse model of RSV infection in a DS-specific context. Ts65Dn mice and wild type littermates were inoculated with a bioluminescence imaging-enabled recombinant human RSV to longitudinally track viral replication in host cells throughout infection progression. This resulted in an active infection in the upper airways and lungs with similar viral load in Ts65Dn mice and euploid mice. Flow cytometric analysis of leukocytes in lungs and spleen demonstrated immune alterations with lower CD8+ T cells and B-cells in Ts65Dn mice. Overall, our study presents a novel DS-specific mouse model of hRSV infection and shows that potential in using the Ts65Dn preclinical model to study immune-specific responses of RSV in the context of DS and supports the need for models representing the pathological development.


Assuntos
Síndrome de Down , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Camundongos , Animais , Síndrome de Down/patologia , Pulmão/patologia , Modelos Animais de Doenças , Imagem Multimodal
4.
Antiviral Res ; 213: 105587, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36977434

RESUMO

Despite the vaccination campaigns for COVID-19, we still cannot control the spread of SARS-CoV-2, as evidenced by the ongoing circulation of the Omicron variants of concern. This highlights the need for broad-spectrum antivirals to further combat COVID-19 and to be prepared for a new pandemic with a (re-)emerging coronavirus. An interesting target for antiviral drug development is the fusion of the viral envelope with host cell membranes, a crucial early step in the replication cycle of coronaviruses. In this study, we explored the use of cellular electrical impedance (CEI) to quantitatively monitor morphological changes in real time, resulting from cell-cell fusion elicited by SARS-CoV-2 spike. The impedance signal in CEI-quantified cell-cell fusion correlated with the expression level of SARS-CoV-2 spike in transfected HEK293T cells. For antiviral assessment, we validated the CEI assay with the fusion inhibitor EK1 and measured a concentration-dependent inhibition of SARS-CoV-2 spike mediated cell-cell fusion (IC50 value of 0.13 µM). In addition, CEI was used to confirm the fusion inhibitory activity of the carbohydrate-binding plant lectin UDA against SARS-CoV-2 (IC50 value of 0.55 µM), which complements prior in-house profiling activities. Finally, we explored the utility of CEI in quantifying the fusogenic potential of mutant spike proteins and in comparing the fusion efficiency of SARS-CoV-2 variants of concern. In summary, we demonstrate that CEI is a powerful and sensitive technology that can be applied to studying the fusion process of SARS-CoV-2 and to screening and characterizing fusion inhibitors in a label-free and non-invasive manner.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Impedância Elétrica , Células HEK293 , Glicoproteína da Espícula de Coronavírus/química , Fusão de Membrana , Antivirais/farmacologia , Antivirais/química , Antirretrovirais/farmacologia
5.
Antiviral Res ; 209: 105518, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587900

RESUMO

In this study, a series of 48 hybrids of the functionalised 1-[(1H-1,2,3-triazole-4-yl)methyl]quinazoline-2,4-dione 17-22 were synthesised and evaluated for potential antiviral activity. The new hybrids were designed to contain a diethoxyphosphoryl group connected to the triazole moiety via ethylene or propylene linker, and in which the benzyl or benzoyl function is substituted at N3 in the quinazoline-2,4-dione moiety. The Cu(I)-catalyzed Hüisgen dipolar cycloaddition of azidophosphonates 23 and 24 with the respective N1-propargylquinazoline-2,4-diones 26aa-26ag, 26ba-26bg, 27aa-27ad and 27ba-27bd was applied for the syntheses of the designed compounds. All final hybrids 17-22 and N3-functionalised N1-propargylquinazoline-2,4-diones 26 and 27 were subsequently evaluated for their antiviral activity toward a broad range of DNA and RNA viruses. Importantly, hybrids 19be-19bg and 20be-20bg showed profound antiviral activities against Respiratory Syncytial Virus (RSV) with EC50 values in the lower micromolar range, with activity against viral strains of both subtypes (RSV A and B). In addition, several compounds also exerted some weak antiviral activity against varicella zoster virus. Finally, 19 ag was the only compound that showed antiviral potency against human cytomegalovirus, although with rather weak inhibitory activity. Notably, none of the tested compounds was cytotoxic toward uninfected cell lines used for the antiviral assays at a concentration up to 100 µM, returning interesting therapeutic indices for respiratory syncytial virus.


Assuntos
Quinazolinas , Vírus Sincicial Respiratório Humano , Humanos , Quinazolinas/farmacologia , Antivirais/farmacologia , Linhagem Celular , Triazóis/farmacologia , Relação Estrutura-Atividade
6.
Front Chem ; 10: 1058229, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36385995

RESUMO

RNA viral infections, including those caused by respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Venezuelan Equine encephalitis virus (VEEV), pose a major global health challenge. Here, we report the synthesis and screening of a series of pyrrolo[2,3-b]pyridines targeting RSV, SARS-CoV-2 and/or VEEV. From this campaign, a series of lead compounds was generated that demonstrated antiviral activity in the low single-digit micromolar range against the various viruses and did not show cytotoxicity. These findings highlight the potential of 3-alkynyl-5-aryl-7-aza-indoles as a promising chemotype for the development of broad-spectrum antiviral agents.

7.
Front Cell Infect Microbiol ; 12: 989534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36111239

RESUMO

Urtica dioica agglutinin (UDA) is a carbohydrate-binding small monomeric protein isolated from stinging nettle rhizomes. It inhibits replication of a broad range of viruses, including coronaviruses, in multiple cell types, with appealing selectivity. In this work, we investigated the potential of UDA as a broad-spectrum antiviral agent against SARS-CoV-2. UDA potently blocks transduction of pseudotyped SARS-CoV-2 in A549.ACE2+-TMPRSS2 cells, with IC50 values ranging from 0.32 to 1.22 µM. Furthermore, UDA prevents viral replication of the early Wuhan-Hu-1 strain in Vero E6 cells (IC50 = 225 nM), but also the replication of SARS-CoV-2 variants of concern, including Alpha, Beta and Gamma (IC50 ranging from 115 to 171 nM). In addition, UDA exerts antiviral activity against the latest circulating Delta and Omicron variant in U87.ACE2+ cells (IC50 values are 1.6 and 0.9 µM, respectively). Importantly, when tested in Air-Liquid Interface (ALI) primary lung epithelial cell cultures, UDA preserves antiviral activity against SARS-CoV-2 (20A.EU2 variant) in the nanomolar range. Surface plasmon resonance (SPR) studies demonstrated a concentration-dependent binding of UDA to the viral spike protein of SARS-CoV-2, suggesting interference of UDA with cell attachment or subsequent virus entry. Moreover, in additional mechanistic studies with cell-cell fusion assays, UDA inhibited SARS-CoV-2 spike protein-mediated membrane fusion. Finally, pseudotyped SARS-CoV-2 mutants with N-glycosylation deletions in the S2 subunit of the spike protein remained sensitive to the antiviral activity of UDA. In conclusion, our data establish UDA as a potent fusion inhibitor for the current variants of SARS-CoV-2.


Assuntos
COVID-19 , Urtica dioica , Enzima de Conversão de Angiotensina 2 , Antirretrovirais , Antivirais/farmacologia , Carboidratos , Európio , Humanos , Receptores de Superfície Celular , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Urtica dioica/metabolismo , Proteínas Virais
8.
Antiviral Res ; 203: 105342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35595082

RESUMO

Despite the great success of the administered vaccines against SARS-CoV-2, the virus can still spread, as evidenced by the current circulation of the highly contagious Omicron variant. This emphasizes the additional need to develop effective antiviral countermeasures. In the context of early preclinical studies for antiviral assessment, robust cellular infection systems are required to screen drug libraries. In this study, we reported the implementation of a human glioblastoma cell line, stably expressing ACE2, in a SARS-CoV-2 cytopathic effect (CPE) reduction assay. These glioblastoma cells, designated as U87.ACE2+, expressed ACE2 and cathepsin B abundantly, but had low cellular levels of TMPRSS2 and cathepsin L. The U87.ACE2+ cells fused highly efficiently and quickly with SARS-CoV-2 spike expressing cells. Furthermore, upon infection with SARS-CoV-2 wild-type virus, the U87.ACE2+ cells displayed rapidly a clear CPE that resulted in complete cell lysis and destruction of the cell monolayer. By means of several readouts we showed that the U87.ACE2+ cells actively replicate SARS-CoV-2. Interestingly, the U87.ACE2+ cells could be successfully implemented in an MTS-based colorimetric CPE reduction assay, providing IC50 values for Remdesivir and Nirmatrelvir in the (low) nanomolar range. Lastly, the U87.ACE2+ cells were consistently permissive to all tested SARS-CoV-2 variants of concern, including the current Omicron variant. Thus, ACE2 expressing glioblastoma cells are highly permissive to SARS-CoV-2 with productive viral replication and with the induction of a strong CPE that can be utilized in high-throughput screening platforms.


Assuntos
Tratamento Farmacológico da COVID-19 , Glioblastoma , Enzima de Conversão de Angiotensina 2 , Antivirais/farmacologia , Vacinas contra COVID-19 , Linhagem Celular , Glioblastoma/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Biotechniques ; 72(6): 245-254, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35445605

RESUMO

Basic and antiviral research on SARS-CoV-2 rely on cellular assays of virus replication in vitro. In addition, accurate detection of virus-infected cells and released virus particles is needed to study virus replication and to profile new candidate antiviral drugs. Here, by flow cytometry, we detect SARS-CoV-2 infection at single cell level and distinguish infected Vero E6 cells from uninfected bystander cells. Furthermore, based on the viral nucleocapsid expression, subpopulations of infected cells that are in an early or late phase of viral replication can be differentiated. Importantly, this flow cytometric technique complements our duplex RT-qPCR detection of viral E and N, and it can be applied to all current SARS-CoV-2 variants of concern, including the highly mutated Omicron variant.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/diagnóstico , Chlorocebus aethiops , Citometria de Fluxo , Humanos , SARS-CoV-2/genética , Células Vero
10.
J Gen Virol ; 101(6): 651-666, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32391748

RESUMO

Crangon crangon is economically a very important species. Recently, promising culture attempts have been made, but a major problem is the uncontrollable mortality during the grow-out phase. As of yet, the life cycle of C. crangon is not closed in captivity so wild-caught individuals are used for further rearing. Therefore, it is important to investigate the virome of C. crangon both in wild-caught animals as in cultured animals. In recent years, next-generation-sequencing (NGS) technologies have been very important in the unravelling of the virome of a wide range of environments and matrices, such as soil, sea, potable water, but also of a wide range of animal species. This will be the first report of a virome study in C. crangon using NGS in combination with the NetoVIR protocol. The near complete genomes of 16 novel viruses were described, most of which were rather distantly related to unclassified viruses or viruses belonging to the Picornavirales, Bunyavirales Nudiviridae, Parvoviridae, Flaviviridae, Hepeviridae, Tombusviridae, Narnaviridae, Nodaviridae, Sobemovirus. A difference in virome composition was observed between muscle and hepatopancreatic tissue, suggesting a distinct tissue tropism of several of these viruses. Some differences in the viral composition were noted between the cultured and wild shrimp, which could indicate that in sub-optimal aquaculture conditions some viruses become more abundant. This research showed that a plethora of unknown viruses is present in C. crangon and that more research is needed to determine which virus is potentially dangerous for the culture of C. crangon.


Assuntos
Crangonidae/virologia , Vírus de DNA/patogenicidade , Animais , Aquicultura , Penaeidae/virologia
11.
Virus Res ; 274: 197760, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31618614

RESUMO

In Gordts et al. (2015), we have shown that lignosulfonic acid, a commercially available lignin derivative, possesses broad antiviral activity against human immunodeficiency virus (HIV) and Herpes simplex virus (HSV) by preventing viral entry into susceptible target cells. Because of the interesting safety profile as potential microbicide, we now determined the antiviral activity of a series of lignosulfonates in order to understand better which molecular features can contribute to their antiviral activity. Here, 24 structurally different lignosulfonates were evaluated for their capacity to inhibit HIV and HSV transmission and replication in various cellular assays. These derivatives differ in origin (hardwood or softwood), counter-ion used during sulphite processing (Na+, Ca2+, or NH4+), sulphur content, carboxylic acid percentage, and molecular weight fraction, which allowed to determine structure-activity relationships. We demonstrate that the broad antiviral activity of lignosulfonates is mainly dependent on their molecular weight and that their mechanism of action is based on interactions with the viral envelope glycoproteins. This makes the lignosulfonates a potential low-cost microbicide that protects women from sexual HIV and HSV transmission and thus prevents life-long infection.


Assuntos
Antivirais/farmacologia , Infecções por HIV/prevenção & controle , HIV/efeitos dos fármacos , Lignina/análogos & derivados , Animais , Antivirais/química , Linhagem Celular , Infecções por HIV/transmissão , Herpes Simples/prevenção & controle , Herpes Simples/transmissão , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Lignina/química , Lignina/farmacologia , Fusão de Membrana/efeitos dos fármacos , Estrutura Molecular , Peso Molecular , Proteínas do Envelope Viral/química , Internalização do Vírus/efeitos dos fármacos
12.
mSphere ; 4(1)2019 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-30674646

RESUMO

Diarrhea remains one of the most common causes of deaths in children. A limited number of studies have investigated the prevalence of enteric pathogens in Cameroon, and as in many other African countries, the cause of many diarrheal episodes remains unexplained. A proportion of these unknown cases of diarrhea are likely caused by yet-unidentified viral agents, some of which could be the result of (recent) interspecies transmission from animal reservoirs, like bats. Using viral metagenomics, we screened fecal samples of 221 humans (almost all with gastroenteritis symptoms) between 0 and 89 years of age with different degrees of bat contact. We identified viruses belonging to families that are known to cause gastroenteritis such as Adenoviridae, Astroviridae, Caliciviridae, Picornaviridae, and Reoviridae Interestingly, a mammalian orthoreovirus, picobirnaviruses, a smacovirus, and a pecovirus were also found. Although there was no evidence of interspecies transmission of the most common human gastroenteritis-related viruses (Astroviridae, Caliciviridae, and Reoviridae), the phylogenies of the identified orthoreovirus, picobirnavirus, and smacovirus indicate a genetic relatedness of these viruses identified in stools of humans and those of bats and/or other animals. These findings points out the possibility of interspecies transmission or simply a shared host of these viruses (bacterial, fungal, parasitic, …) present in both animals (bats) and humans. Further screening of bat viruses in humans or vice versa will elucidate the epidemiological potential threats of animal viruses to human health. Furthermore, this study showed a huge diversity of highly divergent novel phages, thereby expanding the existing phageome considerably.IMPORTANCE Despite the availability of diagnostic tools for different enteric viral pathogens, a large fraction of human cases of gastroenteritis remains unexplained. This could be due to pathogens not tested for or novel divergent viruses of potential animal origin. Fecal virome analyses of Cameroonians showed a very diverse group of viruses, some of which are genetically related to those identified in animals. This is the first attempt to describe the gut virome of humans from Cameroon. Therefore, the data represent a baseline for future studies on enteric viral pathogens in this area and contribute to our knowledge of the world's virome. The studies also highlight the fact that more viruses may be associated with diarrhea than the typical known ones. Hence, it provides meaningful epidemiological information on diarrhea-related viruses in this area.


Assuntos
Diarreia/epidemiologia , Fezes/virologia , Viroses/epidemiologia , Vírus/classificação , Vírus/isolamento & purificação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Camarões , Criança , Pré-Escolar , Diarreia/virologia , Transmissão de Doença Infecciosa , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Metagenômica , Pessoa de Meia-Idade , Filogenia , Prevalência , Viroses/virologia , Vírus/genética , Adulto Jovem , Zoonoses/epidemiologia , Zoonoses/virologia
13.
Virus Evol ; 4(1): vey008, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29644096

RESUMO

Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses. Phylogenetic analyses of the eleven gene segments of the first complete bat rotavirus H genome, showed clearly separated clusters of human, porcine, and bat rotavirus H strains, not indicating any recent interspecies transmission events. Additionally, we identified and analyzed a bat bastrovirus genome (a novel group of recently described viruses, related to astroviruses and hepatitis E viruses), confirming their recombinant nature, and provide further evidence of additional recombination events among bat bastroviruses. Interestingly, picobirnavirus-like RNA-dependent RNA polymerase gene segments were identified using an alternative mitochondrial genetic code, and further principal component analyses suggested that they may have a similar lifestyle to mitoviruses, a group of virus-like elements known to infect the mitochondria of fungi. Although identified bat coronavirus, parvovirus, and cyclovirus strains belong to established genera, most of the identified partitiviruses and densoviruses constitute putative novel genera in their respective families. Finally, the results of the phage community analyses of these bats indicate a very diverse geographically distinct bat phage population, probably reflecting different diets and gut bacterial ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA