Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38329817

RESUMO

Lung macrophages constitute a sophisticated surveillance and defense system that contributes to tissue homeostasis, host defense, and allows the host to cope with the myriad of insults and antigens to which the lung mucosa is exposed. As opposed to alveolar macrophages, lung interstitial macrophages express high levels of type 2 major histocompatibility complex (MHC-II), a hallmark of antigen-presenting cells. Here, we showed that lung IMs, like dendritic cells (DCs), possess the machinery to present soluble antigens in an MHC-II-restricted way. Using ex vivo ovalbumin (OVA)-specific T cell proliferation assays, we found that OVA-pulsed IMs could trigger OVA-specific CD4+ T cell proliferation and Foxp3 expression via MHC-II-, IL-10 and Tgfß-dependent mechanisms. Moreover, we showed that IMs efficiently captured locally instilled antigens in vivo, did not migrate to the draining lymph nodes and enhanced local interactions with CD4+ T cells in a model of OVA-induced allergic asthma. These results support that IMs can present antigens to CD4+ T cells and trigger regulatory T cells, which might attenuate lung immune responses and have functional consequences for lung immunity and T-cell-mediated disorders.

2.
Nat Immunol ; 24(5): 827-840, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928411

RESUMO

Resident tissue macrophages (RTMs) are differentiated immune cells that populate distinct niches and exert important tissue-supportive functions. RTM maintenance is thought to rely either on differentiation from monocytes or on RTM self-renewal. Here, we used a mouse model of inducible lung interstitial macrophage (IM) niche depletion and refilling to investigate the development of IMs in vivo. Using time-course single-cell RNA-sequencing analyses, bone marrow chimeras and gene targeting, we found that engrafted Ly6C+ classical monocytes proliferated locally in a Csf1 receptor-dependent manner before differentiating into IMs. The transition from monocyte proliferation toward IM subset specification was controlled by the transcription factor MafB, while c-Maf specifically regulated the identity of the CD206+ IM subset. Our data provide evidence that, in the mononuclear phagocyte system, the ability to proliferate is not merely restricted to myeloid progenitor cells and mature RTMs but is also a tightly regulated capability of monocytes developing into RTMs in vivo.


Assuntos
Macrófagos , Monócitos , Animais , Camundongos , Diferenciação Celular , Pulmão , Proliferação de Células , Fator de Transcrição MafB/genética
3.
Biomedicines ; 10(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36009554

RESUMO

Prostate cancer (PCa) is one of the most common cancer types in men and represents an increasing global problem due to the modern Western lifestyle. The signalling adapter protein CARD14 is specifically expressed in epithelial cells, where it has been shown to mediate NF-κB signalling, but a role for CARD14 in carcinoma has not yet been described. By analysing existing cancer databases, we found that CARD14 overexpression strongly correlates with aggressive PCa in human patients. Moreover, we showed that CARD14 is overexpressed in the LNCaP PCa cell line and that knockdown of CARD14 severely reduces LNCaP cell survival. Similarly, knockdown of BCL10 and MALT1, which are known to form a signalling complex with CARD14, also induced LNCaP cell death. MALT1 is a paracaspase that mediates downstream signalling by acting as a scaffold, as well as a protease. Recent studies have already indicated a role for the scaffold function of MALT1 in PCa cell growth. Here, we also demonstrated constitutive MALT1 proteolytic activity in several PCa cell lines, leading to cleavage of A20 and CYLD. Inhibition of MALT1 protease activity did not affect PCa cell survival nor activation of NF-κB and JNK signalling, but reduced expression of cancer-associated genes, including the cytokine IL-6. Taken together, our results revealed a novel role for CARD14-induced signalling in regulating PCa cell survival and gene expression. The epithelial cell type-specific expression of CARD14 may offer novel opportunities for more specific therapeutic targeting approaches in PCa.

4.
FEBS J ; 288(5): 1630-1647, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790937

RESUMO

Signal transduction typically displays a so-called bow-tie topology: Multiple receptors lead to multiple cellular responses but the signals all pass through a narrow waist of central signaling nodes. One such signaling node for several inflammatory and oncogenic signaling pathways is the CARD-CC/BCL10/MALT1 (CBM) complexes, which get activated by protein kinase C (PKC)-mediated phosphorylation of the caspase activation and recruitment domain (CARD)-coiled-coil domain (CC) component. In humans, there are four CARD-CC family proteins (CARD9, CARD10, CARD11, and CARD14) and 9 true PKC isozymes (α to ι). At this moment, less than a handful of PKC::CARD-CC relationships are known. In order to explore the biologically relevant combinatorial space out of all 36 potential permutations in this two-component signaling event, we made use of CARD10-deficient human embryonic kidney 293T cells for subsequent pairwise cotransfections of all CARD-CC family members and all activated PKCs. Upon analysis of NF-κB-dependent reporter gene expression, we could define specific PKC::CARD-CC relationships. Surprisingly, as many as 21 PKC::CARD-CC functional combinations were identified. CARD10 was responsive to most PKCs, while CARD14 was mainly activated by PKCδ. The CARD11 activation profile was most similar to that of CARD9. We also discovered the existence of mixed protein complexes between different CARD-CC proteins, which was shown to influence their PKC response profile. Finally, multiple PKCs were found to use a common phosphorylation site to activate CARD9, while additional phosphorylation sites contribute to CARD14 activation. Together, these data reveal the combinatorial space of PKC::CARD-CC signal transduction nodes, which will be valuable for future studies on the regulation of CBM signaling.


Assuntos
Proteína 10 de Linfoma CCL de Células B/genética , Proteínas Adaptadoras de Sinalização CARD/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , NF-kappa B/genética , Proteína Quinase C/genética , Sequência de Aminoácidos , Animais , Proteína 10 de Linfoma CCL de Células B/metabolismo , Sítios de Ligação , Proteínas Adaptadoras de Sinalização CARD/classificação , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , NF-kappa B/metabolismo , Fosforilação , Filogenia , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/classificação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinase C/classificação , Proteína Quinase C/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Transfecção
5.
Front Immunol ; 11: 1422, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32754154

RESUMO

Cytokines are small secreted proteins that among many functions also play key roles in the orchestration of inflammation in host defense and disease. Over the past years, a large number of biologics have been developed to target cytokines in disease, amongst which soluble receptor fusion proteins have shown some promise in pre-clinical studies. We have previously shown proof-of-concept for the therapeutic targeting of interleukin (IL)-33 in airway inflammation using a newly developed biologic, termed IL-33trap, comprising the ectodomains of the cognate receptor ST2 and the co-receptor IL-1RAcP fused into a single-chain recombinant fusion protein. Here we extend the biophysical and biological characterization of IL-33trap variants, and show that IL-33trap is a stable protein with a monomeric profile both at physiological temperatures and during liquid storage at 4°C. Reducing the N-glycan heterogeneity and complexity of IL-33trap via GlycoDelete engineering neither affects its stability nor its inhibitory activity against IL-33. We also report that IL-33trap specifically targets biologically active IL-33 splice variants. Finally, we document the generation and antagonistic activity of a single-chain IL-4/13trap, which inhibits both IL-4 and IL-13 signaling. Collectively, these results illustrate that single-chain soluble receptor fusion proteins against IL-4, IL-13, and IL-33 are novel biologics that might not only be of interest for research purposes and further interrogation of the role of their target cytokines in physiology and disease, but may also complement monoclonal antibodies for the treatment of allergic and other inflammatory diseases.


Assuntos
Anti-Inflamatórios , Interleucina-33/antagonistas & inibidores , Proteínas Recombinantes de Fusão , Células HEK293 , Humanos , Interleucina-13/antagonistas & inibidores , Interleucina-4/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA