Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(18): e2311342, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38241258

RESUMO

Progress in layered van der Waals materials has resulted in the discovery of ferromagnetic and ferroelectric materials down to the monolayer limit. Recently, evidence of the first purely 2D multiferroic material was reported in monolayer NiI2. However, probing multiferroicity with scattering-based and optical bulk techniques is challenging on 2D materials, and experiments on the atomic scale are needed to fully characterize the multiferroic order at the monolayer limit. Here, scanning tunneling microscopy (STM) supported by density functional theory (DFT) calculations is used to probe and characterize the multiferroic order in monolayer NiI2. It is demonstrated that the type-II multiferroic order displayed by NiI2, arising from the combination of a magnetic spin spiral order and a strong spin-orbit coupling, allows probing the multiferroic order in the STM experiments. Moreover, the magnetoelectric coupling of NiI2 is directly probed by external electric field manipulation of the multiferroic domains. The findings establish a novel point of view to analyze magnetoelectric effects at the microscopic level, paving the way toward engineering new multiferroic orders in van der Waals materials and their heterostructures.

2.
Adv Mater ; 35(45): e2305409, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37592888

RESUMO

Unconventional superconductors represent one of the fundamental directions in modern quantum materials research. In particular, nodal superconductors are known to appear naturally in strongly correlated systems, including cuprate superconductors and heavy-fermion systems. Van der Waals materials hosting superconducting states are well known, yet nodal monolayer van der Waals superconductors have remained elusive. Here, using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) experiments, it is shown that pristine monolayer 1H-TaS2 realizes a nodal superconducting state. Non-magnetic disorder drives the nodal superconducting state to a conventional gapped s-wave state. Furthermore, many-body excitations emerge close to the gap edge, signalling a potential unconventional pairing mechanism. The results demonstrate the emergence of nodal superconductivity in a van der Waals monolayer, providing a building block for van der Waals heterostructures exploiting unconventional superconducting states.

3.
Adv Mater ; 35(9): e2206456, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36526444

RESUMO

2D ferroelectric materials provide a promising platform for the electrical control of quantum states. In particular, due to their 2D nature, they are suitable for influencing the quantum states of deposited molecules via the proximity effect. Here, electrically controllable molecular states in phthalocyanine molecules adsorbed on monolayer ferroelectric material SnTe are reported. The strain and ferroelectric order in SnTe are found to create a transition between two distinct orbital orders in the adsorbed phthalocyanine molecules. By controlling the polarization of the ferroelectric domain using scanning tunneling microscopy (STM), it is successfully demonstrated that orbital order can be manipulated electrically. The results show how ferroelastic coupling in 2D systems allows for control of molecular states, providing a starting point for ferroelectrically switchable molecular orbital ordering and ultimately, electrical control of molecular magnetism.

4.
Nano Lett ; 22(5): 1845-1850, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35167310

RESUMO

Transition metal dichalcogenides (TMDC) are a rich family of two-dimensional materials displaying a multitude of different quantum ground states. In particular, d3 TMDCs are paradigmatic materials hosting a variety of symmetry broken states, including charge density waves, superconductivity, and magnetism. Among this family, NbSe2 is one of the best-studied superconducting materials down to the monolayer limit. Despite its superconducting nature, a variety of results point toward strong electronic repulsions in NbSe2. Here, we control the strength of the interactions experimentally via quantum confinement and use low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS) to demonstrate that NbSe2 is in close proximity to a correlated insulating state. This reveals the coexistence of competing interactions in NbSe2, creating a transition from a superconducting to an insulating quantum correlated state by confinement-controlled interactions. Our results demonstrate the dramatic role of interactions in NbSe2, establishing NbSe2 as a correlated superconductor with competing interactions.

5.
Nano Lett ; 22(1): 328-333, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978831

RESUMO

The search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moiré patterns can act as a powerful knob to create artificial electronic structures. Here, we demonstrate that a moiré pattern between a van der Waals superconductor and a monolayer ferromagnet creates a periodic potential modulation that enables the realization of a topological superconducting state that would not be accessible in the absence of the moiré. The magnetic moiré pattern gives rise to Yu-Shiba-Rusinov minibands and periodic modulation of the Majorana edge modes that we detect using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Moiré patterns and, more broadly, periodic potential modulations are powerful tools to overcome the conventional constraints for realizing and controlling topological superconductivity.

6.
Nature ; 599(7886): 582-586, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819682

RESUMO

Heavy-fermion systems represent one of the paradigmatic strongly correlated states of matter1-5. They have been used as a platform for investigating exotic behaviour ranging from quantum criticality and non-Fermi liquid behaviour to unconventional topological superconductivity4-12. The heavy-fermion phenomenon arises from the exchange interaction between localized magnetic moments and conduction electrons leading to Kondo lattice physics, and represents one of the long-standing open problems in quantum materials3. In a Kondo lattice, the exchange interaction gives rise to a band with heavy effective mass. This intriguing phenomenology has so far been realized only in compounds containing rare-earth elements with 4f or 5f electrons1,4,13,14. Here we realize a designer van der Waals heterostructure where artificial heavy fermions emerge from the Kondo coupling between a lattice of localized magnetic moments and itinerant electrons in a 1T/1H-TaS2 heterostructure. We study the heterostructure using scanning tunnelling microscopy and spectroscopy and show that depending on the stacking order of the monolayers, we can reveal either the localized magnetic moments and the associated Kondo effect, or the conduction electrons with a heavy-fermion hybridization gap. Our experiments realize an ultimately tunable platform for future experiments probing enhanced many-body correlations, dimensional tuning of quantum criticality and unconventional superconductivity in two-dimensional artificial heavy-fermion systems15-17.

7.
Adv Mater ; 33(23): e2006850, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33938604

RESUMO

The ability to imprint a given material property to another through a proximity effect in layered 2D materials has opened the way to the creation of designer materials. Here, molecular-beam epitaxy is used for direct synthesis of a superconductor-ferromagnet heterostructure by combining superconducting niobium diselenide (NbSe2 ) with the monolayer ferromagnetic chromium tribromide (CrBr3 ). Using different characterization techniques and density-functional theory calculations, it is confirmed that the CrBr3 monolayer retains its ferromagnetic ordering with a magnetocrystalline anisotropy favoring an out-of-plane spin orientation. Low-temperature scanning tunneling microscopy measurements show a slight reduction of the superconducting gap of NbSe2 and the formation of a vortex lattice on the CrBr3 layer in experiments under an external magnetic field. The results contribute to the broader framework of exploiting proximity effects to realize novel phenomena in 2D heterostructures.

8.
Nature ; 588(7838): 424-428, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33328663

RESUMO

Exotic states such as topological insulators, superconductors and quantum spin liquids are often challenging or impossible to create in a single material1-3. For example, it is unclear whether topological superconductivity, which has been suggested to be a key ingredient for topological quantum computing, exists in any naturally occurring material4-9. The problem can be circumvented by deliberately selecting the combination of materials in heterostructures so that the desired physics emerges from interactions between the different components1,10-15. Here we use this designer approach to fabricate van der Waals heterostructures that combine a two-dimensional (2D) ferromagnet with a superconductor, and we observe 2D topological superconductivity in the system. We use molecular-beam epitaxy to grow 2D islands of ferromagnetic chromium tribromide16 on superconducting niobium diselenide. We then use low-temperature scanning tunnelling microscopy and spectroscopy to reveal the signatures of one-dimensional Majorana edge modes. The fabricated 2D van der Waals heterostructure provides a high-quality, tunable system that can be readily integrated into device structures that use topological superconductivity. The layered heterostructures can be readily accessed by various external stimuli, potentially allowing external control of 2D topological superconductivity through electrical17, mechanical18, chemical19 or optical means20.

9.
Sci Rep ; 9(1): 13552, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537828

RESUMO

In this paper, the potential existence of two-gap superconductivity in Mo8Ga41 is addressed in detail by means of thermodynamic and spectroscopic measurements. A combination of highly sensitive bulk and surface probes, specifically ac-calorimetry and scanning tunneling spectroscopy (STS), are utilized on the same piece of crystal and reveal the presence of only one intrinsic gap in the system featuring strong electron-phonon coupling. Minute traces of additional superconducting phases detected by STS and also in the heat capacity measured in high magnetic fields on a high-quality and seemingly single-phase crystal might mimic the multigap superconductivity of Mo8Ga41 suggested recently in several studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA