Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475287

RESUMO

This work presents the dielectric and ultrasonic properties of polydimethylsiloxane (PDMS) nanocomposites filled with titanium dioxide nanoparticles. The dielectric study was performed over a very broad range of frequencies (20 Hz-3 THz). The dielectric permittivity was almost frequency-independent in all the composites at room temperature over the whole range of measurement frequencies, and the dielectric losses were very low under these conditions (less than 2). The dielectric permittivity strongly increases with the nanoparticle concentration according to the Maxwell-Garnet model. Therefore, the investigated composites are suitable for various flexible electronic applications, particularly in the microwave and terahertz frequency ranges. Dielectric dispersion and increased attenuation of ultrasonic waves were observed at lower temperatures (below 280 K) due to the relaxation of polymer molecules at the PDMS/TiO2 interface and in the polymer matrix. The relaxation time followed the Vogel-Vulcher law, while the freezing temperature increased with the titanium dioxide concentration due to interactions between the polymer molecules and nanoparticles. The significant hysteresis in the ultrasonic properties indicated that titanium dioxide acts as a crystallization center. This is confirmed by the correlation between the hysteresis in the ultrasonic properties and the structure of the composites. The small difference in the activation energy values obtained from the ultrasonic and dielectric investigations is related to the fact that the dielectric dispersion is slightly broader than the Debye-type dielectric dispersion.

2.
Materials (Basel) ; 15(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269106

RESUMO

Polymer composites with electrically conductive inclusions are intensively developed for microwave shielding applications, where lightweight and elastic coatings are necessary. In this paper, dielectric properties of hybrid polyethylene composites containing cobalt nanoparticles and multi-wall carbon nanotubes (MWCNT) were investigated in the wide frequency range of 20-40 GHz for electromagnetic shielding applications. The percolation threshold in the hybrid system is close to 6.95 wt% MWCNT and 0.56 Co wt%. Cobalt nanoparticles (up to highest investigated concentration 4.8 wt%) had no impact on the percolation threshold, and for the fixed total concentration of fillers, the complex dielectric permittivity is higher for composites with bigger MWCNT concentrations. Moreover, the microwave complex dielectric permittivity of composites with high concentration of fillers is quite high (for composites with 13.4 wt% MWCNT and 1.1 wt% Co ε' ≈ ε″ ≈ 20 at 30 GHz, it corresponds to microwave absorption 50% of 1 mm thickness plate); therefore, these composites are suitable for electromagnetic shielding applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA