Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(5)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36731132

RESUMO

Purpose.Although charged particle therapy (CPT) for cancer treatment has grown these past years, the use of protons and carbon ions for therapy remains debated compared to x-ray therapy. While a biological advantage of protons is not clearly demonstrated, therapy using carbon ions is often pointed out for its high cost. Furthermore, the nuclear interactions undergone by carbons inside the patient are responsible for an additional dose delivered after the Bragg peak, which deteriorates the ballistic advantage of CPT. Therefore, a renewed interest for lighter ions with higher biological efficiency than protons was recently observed. In this context, helium and lithium ions represent a good compromise between protons and carbons, as they exhibit a higher linear energy transfer (LET) than protons in the Bragg peak and can be accelerated by cyclotrons. The possibility of accelerating radioactive8Li, decaying in 2α-particles, and8He, decaying in8Li byß-decay, is particularly interesting.Methods. This work aims to assess the interest of the use of8Li and8He ions for therapy by Monte Carlo simulations carried out withGeant4.Results. It was calculated that the8Li and8He decay results in an increase of the LET of almost a factor 2 in the Bragg peak compared to stable7Li and4He. This results also in a higher dose deposited in the Bragg peak without an increase of the dose in the plateau region. It was also shown that both8He and8Li can have a potential interest for prompt-gamma monitoring techniques. Finally, the feasibility of accelerating facilities delivering8Li and8He was also discussed.Conclusion. In this study, we demonstrate that both8Li and8He have interesting properties for therapy. Indeed, simulations predict that8Li and8He are a good compromise between proton and12C, both in terms of LET and dose.


Assuntos
Terapia com Prótons , Prótons , Humanos , Lítio , Íons , Simulação por Computador , Método de Monte Carlo , Hélio/uso terapêutico , Carbono
2.
Phys Med Biol ; 62(24): 9220-9239, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29058685

RESUMO

Ion beam therapy enables a highly accurate dose conformation delivery to the tumor due to the finite range of charged ions in matter (i.e. Bragg peak (BP)). Consequently, the dose profile is very sensitive to patients anatomical changes as well as minor mispositioning, and so it requires improved dose control techniques. Proton interaction vertex imaging (IVI) could offer an online range control in carbon ion therapy. In this paper, a statistical method was used to study the sensitivity of the IVI technique on experimental data obtained from the Heidelberg Ion-Beam Therapy Center. The vertices of secondary protons were reconstructed with pixelized silicon detectors. The statistical study used the [Formula: see text] test of the reconstructed vertex distributions for a given displacement of the BP position as a function of the impinging carbon ions. Different phantom configurations were used with or without bone equivalent tissue and air inserts. The inflection points in the fall-off region of the longitudinal vertex distribution were computed using different methods, while the relation with the BP position was established. In the present setup, the resolution of the BP position was about 4-5 mm in the homogeneous phantom under clinical conditions (106 incident carbon ions). Our results show that the IVI method could therefore monitor the BP position with a promising resolution in clinical conditions.


Assuntos
Radioterapia com Íons Pesados/métodos , Radioterapia Assistida por Computador/métodos , Humanos , Imagens de Fantasmas , Prótons , Dosagem Radioterapêutica
3.
Phys Med Biol ; 59(7): 1857-72, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24625560

RESUMO

The radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue-like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g. protons and photons) and the position of the primary beam Bragg peak. In this paper, the measurements of charged particle fluxes produced by the interaction of a 220 MeV/u carbon ion beam at GSI, Darmstadt, with a polymethyl methacrylate target are reported. The emission region of protons (p), deuterons (d) and tritons (t) has been characterized using a drift chamber while the particle time-of-flight, used to compute the kinetic energy spectra, was measured with a LYSO scintillator. The energy released in the LYSO crystal was used for particle identification purposes. The measurements were repeated with the setup at 60° and 90° with respect to the primary beam direction. The accuracy on the fragments emission profile reconstruction and its relationship with the Bragg peak position have been studied. Based on the acquired experimental evidence, a method to monitor the dose profile and the position of the Bragg peak inside the target is proposed.


Assuntos
Carbono/uso terapêutico , Polimetil Metacrilato , Radiometria/métodos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA