Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 105, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755661

RESUMO

BACKGROUND: The main drawback of BRAF/MEK inhibitors (BRAF/MEKi)-based targeted therapy in the management of BRAF-mutated cutaneous metastatic melanoma (MM) is the development of therapeutic resistance. We aimed to assess in this context the role of mTORC2, a signaling complex defined by the presence of the essential RICTOR subunit, regarded as an oncogenic driver in several tumor types, including MM. METHODS: After analyzing The Cancer Genome Atlas MM patients' database to explore both overall survival and molecular signatures as a function of intra-tumor RICTOR levels, we investigated the effects of RICTOR downregulation in BRAFV600E MM cell lines on their response to BRAF/MEKi. We performed proteomic screening to identify proteins modulated by changes in RICTOR expression, and Seahorse analysis to evaluate the effects of RICTOR depletion on mitochondrial respiration. The combination of BRAFi with drugs targeting proteins and processes emerged in the proteomic screening was carried out on RICTOR-deficient cells in vitro and in a xenograft setting in vivo. RESULTS: Low RICTOR levels in BRAF-mutated MM correlate with a worse clinical outcome. Gene Set Enrichment Analysis of low-RICTOR tumors display gene signatures suggestive of activation of the mitochondrial Electron Transport Chain (ETC) energy production. RICTOR-deficient BRAFV600E cells are intrinsically tolerant to BRAF/MEKi and anticipate the onset of resistance to BRAFi upon prolonged drug exposure. Moreover, in drug-naïve cells we observed a decline in RICTOR expression shortly after BRAFi exposure. In RICTOR-depleted cells, both mitochondrial respiration and expression of nicotinamide phosphoribosyltransferase (NAMPT) are enhanced, and their pharmacological inhibition restores sensitivity to BRAFi. CONCLUSIONS: Our work unveils an unforeseen tumor-suppressing role for mTORC2 in the early adaptation phase of BRAFV600E melanoma cells to targeted therapy and identifies the NAMPT-ETC axis as a potential therapeutic vulnerability of low RICTOR tumors. Importantly, our findings indicate that the evaluation of intra-tumor RICTOR levels has a prognostic value in metastatic melanoma and may help to guide therapeutic strategies in a personalized manner.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Alvo Mecanístico do Complexo 2 de Rapamicina , Melanoma , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Proteína Companheira de mTOR Insensível à Rapamicina , Humanos , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo , Proteína Companheira de mTOR Insensível à Rapamicina/genética , Melanoma/genética , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos , Animais , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto , Regulação Neoplásica da Expressão Gênica , Mutação , Regulação para Baixo , Proteômica/métodos
2.
Int J Mol Sci ; 24(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37511223

RESUMO

The genome sequencing of the tardigrade Ramazzottius varieornatus revealed a unique nucleosome-binding protein named damage suppressor (Dsup), which was discovered to be crucial for the extraordinary abilities of tardigrades in surviving extreme stresses, such as UV. Evidence in Dsup-transfected human cells suggests that Dsup mediates an overall response in DNA damage signaling, DNA repair, and cell cycle regulation, resulting in an acquired resistance to stress. Given these promising outcomes, our study attempts to provide a wider comprehension of the molecular mechanisms modulated by Dsup in human cells and to explore the Dsup-activated molecular pathways under stress. We performed a differential proteomic analysis of Dsup-transfected and control human cells under basal conditions and at 24 h recovery after exposure to UV-C. We demonstrate via enrichment and network analyses, for the first time, that even in the absence of external stimuli, and more significantly, after stress, Dsup activates mechanisms involved with the unfolded protein response, the mRNA processing and stability, cytoplasmic stress granules, the DNA damage response, and the telomere maintenance. In conclusion, our results shed new light on Dsup-mediated protective mechanisms and increases our knowledge of the molecular machineries of extraordinary protection against UV-C stress.


Assuntos
Proteômica , Tardígrados , Humanos , Animais , Tardígrados/genética , Tardígrados/metabolismo , Dano ao DNA , Reparo do DNA , Mapeamento Cromossômico
3.
Sci Total Environ ; 891: 164651, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37277040

RESUMO

Today application of sewage sludge (SL) and hydrochar (HC) in agriculture is a common practice for soil conditioning and crop fertilization, however safety concerns for human and environmental health due to the presence of toxic compounds have recently been expressed. Our aim was to test the suitability of proteomics coupled with bioanalytical tools for unravelling mixture effects of these applications in human and environmental safety assessment. We conducted proteomic and bioinformatic analysis of cell cultures used in the DR-CALUX® bioassay to identify proteins differentially abundant after exposure to SL and the corresponding HC, rather than only using the Bioanalytical Toxicity Equivalents (BEQs) obtained by DR-CALUX®. DR-CALUX® cells exposed to SL or HC showed a differential pattern of protein abundance depending on the type of SL and HC extract. The modified proteins are involved in antioxidant pathways, unfolded protein response and DNA damage that have close correlations with the effects of dioxin on biological systems and with onset of cancer and neurological disorders. Other cell response evidence suggested enrichment of heavy metals in the extracts. The present combined approach represents an advance in the application of bioanalytical tools for safety assessment of complex mixtures such as SL and HC. It proved successful in screening proteins, the abundance of which is determined by SL and HC and by the biological activity of legacy toxic compounds, including organohalogens.


Assuntos
Dibenzodioxinas Policloradas , Esgotos , Humanos , Genes Reporter , Proteômica , Dibenzodioxinas Policloradas/toxicidade , Bioensaio
4.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674438

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a form of chronic and irreversible fibrosing interstitial pneumonia of unknown etiology. Although antifibrotic treatments have shown a reduction of lung function decline and a slow disease progression, IPF is characterize by a very high mortality. Emerging evidence suggests that IPF increases the risk of lung carcinogenesis. Both diseases show similarities in terms of risk factors, such as history of smoking, concomitant emphysema, and viral infections, besides sharing similar pathogenic pathways. Lung cancer (LC) diagnosis is often difficult in IPF patients because of the diffuse lung injuries and abnormalities due to the underlying fibrosis. This is reflected in the lack of optimal therapeutic strategies for patients with both diseases. For this purpose, we performed a proteomic study on bronchoalveolar lavage fluid (BALF) samples from IPF, LC associated with IPF (LC-IPF) patients, and healthy controls (CTRL). Molecular pathways involved in inflammation, immune response, lipid metabolism, and cell adhesion were found for the dysregulated proteins in LC-IPF, such as TTHY, APOA1, S10A9, RET4, GDIR1, and PROF1. The correlation test revealed a relationship between inflammation- and lipid metabolism-related proteins. PROF1 and S10A9, related to inflammation, were up-regulated in LC-IPF BAL and serum, while APOA1 and APOE linked to lipid metabolism, were highly abundant in IPF BAL and low abundant in IPF serum. Given the properties of cytokine/adipokine of the nicotinamide phosphoribosyltransferase, we also evaluated its serum abundance, highlighting its down-regulation in LC-IPF. Our retrospective analyses of BAL samples extrapolated some potential biomarkers of LC-IPF useful to improve the management of these contemporary pathologies. Their differential abundance in serum samples permits the measurement of these potential biomarkers with a less invasive procedure.


Assuntos
Adenocarcinoma de Pulmão , Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Estudos Retrospectivos , Proteômica/métodos , Fibrose Pulmonar Idiopática/metabolismo , Líquido da Lavagem Broncoalveolar , Fibrose , Inflamação , Adenocarcinoma de Pulmão/diagnóstico , Neoplasias Pulmonares/diagnóstico , Biomarcadores
5.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362324

RESUMO

Krabbe disease (KD) is a rare autosomal recessive disorder caused by mutations in the galactocerebrosidase gene (GALC). Defective GALC causes aberrant metabolism of galactolipids present almost exclusively in myelin, with consequent demyelinization and neurodegeneration of the central and peripheral nervous system (NS). KD shares some similar features with other neuropathies and heterozygous carriers of GALC mutations are emerging with an increased risk in developing NS disorders. In this work, we set out to identify possible variations in the proteomic profile of KD-carrier brain to identify altered pathways that may imbalance its homeostasis and that may be associated with neurological disorders. The differential analysis performed on whole brains from 33-day-old twitcher (galc -/-), heterozygous (galc +/-), and wild-type mice highlighted the dysregulation of several multifunctional factors in both heterozygous and twitcher mice. Notably, the KD-carrier mouse, despite its normal phenotype, presents the deregulation of vimentin, receptor of activated protein C kinase 1 (RACK1), myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), transitional endoplasmic reticulum ATPase (VCP), and N-myc downstream regulated gene 1 protein (NDRG1) as well as changes in the ubiquitinated-protein pattern. Our findings suggest the carrier may be affected by dysfunctions classically associated with neurodegeneration: (i) alteration of (mechano) signaling and intracellular trafficking, (ii) a generalized affection of proteostasis and lipid metabolism, with possible defects in myelin composition and turnover, and (iii) mitochondrion and energy supply dysfunctions.


Assuntos
Leucodistrofia de Células Globoides , Doenças Neurodegenerativas , Animais , Camundongos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Proteômica , Modelos Animais de Doenças , Galactosilceramidase/genética , Galactosilceramidase/metabolismo
6.
Proteomes ; 10(2)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35645370

RESUMO

In the era of multi-omic sciences, dogma on singular cause-effect in physio-pathological processes is overcome and system biology approaches have been providing new perspectives to see through. In this context, extracellular vesicles (EVs) are offering a new level of complexity, given their role in cellular communication and their activity as mediators of specific signals to target cells or tissues. Indeed, their heterogeneity in terms of content, function, origin and potentiality contribute to the cross-interaction of almost every molecular process occurring in a complex system. Such features make EVs proper biological systems being, therefore, optimal targets of omic sciences. Currently, most studies focus on dissecting EVs content in order to either characterize it or to explore its role in various pathogenic processes at transcriptomic, proteomic, metabolomic, lipidomic and genomic levels. Despite valuable results being provided by individual omic studies, the categorization of EVs biological data might represent a limit to be overcome. For this reason, a multi-omic integrative approach might contribute to explore EVs function, their tissue-specific origin and their potentiality. This review summarizes the state-of-the-art of EVs omic studies, addressing recent research on the integration of EVs multi-level biological data and challenging developments in EVs origin.

7.
Biomedicines ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35453511

RESUMO

Severe eosinophilic asthma is characterized by chronic airway inflammation, oxidative stress, and elevated proinflammatory cytokines, especially IL-5. Mepolizumab and benralizumab are both humanized IgG antibodies directed against IL-5 signaling, directly acting on eosinophils count. Together with the complexity of severe asthma classification and patient selection for the targeted treatment, there is also the urgency to clarify the follow-up of therapy to identify biomarkers, in addition to eosinophils, for the optimal duration of treatment, persistence of effectiveness, and safety. To this purpose, here we performed a follow-up study using differential proteomic analysis on serum samples after 1 and 6 months of both therapies and sera from healthy patients. Statistical analysis by PCA and heatmap analyses were performed, and identified proteins were used for enrichment analysis by MetaCore software. The analysis highlighted 82 differences among all considered conditions. In particular, 30 referred to benralizumab time point (T0, T1B, T6B) and 24 to mepolizumab time point (T0, T1M, T6M) analyses. t-SNE and heatmap analyses evidence that the differential serum protein profile at 6 months of both treatments is more similar to that of the healthy subjects. Among the identified proteins, APOAI, APOC-II, and APOC-III are upregulated principally after 6 months of benralizumab treatment, plasminogen is upregulated after 6 months of both treatments and ceruloplasmin, upregulated already after 1 month of benralizumab, becoming higher after 6 months of mepolizumab. Using enrichment analysis, identified proteins were related to lipid metabolism and transport, blood coagulation, and ECM remodeling.

8.
Artigo em Inglês | MEDLINE | ID: mdl-35410049

RESUMO

The principal aim of the present study was to develop and apply novel ex vivo tests as an alternative to cell cultures able to evaluate the possible effects of emerging and legacy contaminants in Caretta caretta. To this end, we performed ex vivo experiments on non-invasively collected whole-blood and skin-biopsy slices treated with chrysene, MEHP, or PBDE-47. Blood samples were tested by oxidative stress (TAS), immune system (respiratory burst, lysozyme, and complement system), and genotoxicity (ENA assay) biomarkers, and genotoxic and immune system effects were observed. Skin slices were analyzed by applying a 2D-PAGE/MS proteomic approach, and specific contaminant signatures were delineated on the skin proteomic profile. These reflect biochemical effects induced by each treatment and allowed to identify glutathione S-transferase P, peptidyl-prolyl cis-trans isomerase A, mimecan, and protein S100-A6 as potential biomarkers of the health-threatening impact the texted toxicants have on C. caretta. Obtained results confirm the suitability of the ex vivo system and indicate the potential risk the loggerhead sea turtle is undergoing in the natural environment. In conclusion, this work proved the relevance that the applied ex vivo models may have in testing the toxicity of other compounds and mixtures and in biomarker discovery.


Assuntos
Tartarugas , Animais , Biomarcadores/metabolismo , Crisenos , Dietilexilftalato/análogos & derivados , Éteres Difenil Halogenados , Proteômica , Tartarugas/metabolismo
9.
J Clin Med ; 11(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35330001

RESUMO

The monotherapy with levo-thyroxine (LT4) is the treatment of choice for patients with hypothyroidism after thyroidectomy. However, many athyreotic LT4-treated patients with thyroid hormones in the physiological range experience hypothyroid-like symptoms, showing post-operative, statistically significant lower FT3 levels with respect to that before total thyroidectomy. Since we hypothesized that the lower plasmatic FT3 levels observed in this subgroup could be associated with tissue hypothyroidism, here we compared, by a preliminary proteomic analysis, eight sera of patients with reduced post-surgical FT3 to eight sera from patients with FT3 levels similar to pre-surgery levels, and six healthy controls. Proteomic analysis highlights a different serum protein profile among the considered conditions. By enrichment analysis, differential proteins are involved in coagulation processes (PLMN-1.61, -1.98 in reduced vs. stable FT3, p < 0.02; A1AT fragmentation), complement system activation (CFAH + 1.83, CFAB + 1.5, C1Qb + 1.6, C1S + 7.79 in reduced vs. stable FT3, p < 0.01) and in lipoprotein particles remodeling (APOAI fragmentation; APOAIV + 2.13, p < 0.003), potentially leading to a pro-inflammatory response. This study suggests that LT4 replacement therapy might restore biochemical euthyroid conditions in thyroidectomized patients, but in some cases without re-establishing body tissue euthyroidism. Since our results, this condition is reflected by the serum protein profile.

10.
Int J Mol Sci ; 22(11)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071777

RESUMO

In the longtime challenge of identifying specific, easily detectable and reliable biomarkers of IPF, BALF proteomics is providing interesting new insights into its pathogenesis. To the best of our knowledge, the present study is the first shotgun proteomic investigation of EVs isolated from BALF of IPF patients. Our main aim was to characterize the proteome of the vesicular component of BALF and to explore its individual impact on the pathogenesis of IPF. To this purpose, ultracentrifugation was chosen as the EVs isolation technique, and their purification was assessed by TEM, 2DE and LC-MS/MS. Our 2DE data and scatter plots showed considerable differences between the proteome of EVs and that of whole BALF and of its fluid component. Analysis of protein content and protein functions evidenced that EV proteins are predominantly involved in cytoskeleton remodeling, adenosine signaling, adrenergic signaling, C-peptide signaling and lipid metabolism. Our findings may suggest a wider system involvement in the disease pathogenesis and support the importance of pre-fractioning of complex samples, such as BALF, in order to let low-abundant proteins-mediated pathways emerge.


Assuntos
Biomarcadores , Líquido da Lavagem Broncoalveolar , Vesículas Extracelulares/metabolismo , Fibrose Pulmonar Idiopática/etiologia , Fibrose Pulmonar Idiopática/metabolismo , Proteoma , Proteômica , Idoso , Cromatografia Líquida , Suscetibilidade a Doenças , Eletroforese em Gel Bidimensional , Vesículas Extracelulares/ultraestrutura , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Transdução de Sinais , Espectrometria de Massas em Tandem
11.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919289

RESUMO

Spinal muscular atrophy (SMA) type 1 is a severe infantile autosomal-recessive neuromuscular disorder caused by a survival motor neuron 1 gene (SMN1) mutation and characterized by progressive muscle weakness. Without supportive care, SMA type 1 is rapidly fatal. The antisense oligonucleotide nusinersen has recently improved the natural course of this disease. Here, we investigated, with a functional proteomic approach, cerebrospinal fluid (CSF) protein profiles from SMA type 1 patients who underwent nusinersen administration to clarify the biochemical response to the treatment and to monitor disease progression based on therapy. Six months after starting treatment (12 mg/5 mL × four doses of loading regimen administered at days 0, 14, 28, and 63), we observed a generalized reversion trend of the CSF protein pattern from our patient cohort to that of control donors. Notably, a marked up-regulation of apolipoprotein A1 and apolipoprotein E and a consistent variation in transthyretin proteoform occurrence were detected. Since these multifunctional proteins are critically active in biomolecular processes aberrant in SMA, i.e., synaptogenesis and neurite growth, neuronal survival and plasticity, inflammation, and oxidative stress control, their nusinersen induced modulation may support SMN improved-expression effects. Hence, these lipoproteins and transthyretin could represent valuable biomarkers to assess patient responsiveness and disease progression.


Assuntos
Terapia Genética , Oligonucleotídeos/farmacologia , Proteoma/análise , Atrofias Musculares Espinais da Infância/terapia , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Atrofias Musculares Espinais da Infância/líquido cefalorraquidiano , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Atrofias Musculares Espinais da Infância/genética
12.
Biochim Biophys Acta Proteins Proteom ; 1869(2): 140563, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33176218

RESUMO

INTRODUCTION: Severe eosinophilic asthma has been associated with Th2 airway inflammation and elevated proinflammatory cytokines and chemokines, such as IL-5. Precision therapies have recently been shown to improve asthma symptoms with a steroid-sparing effect. Two such therapies, Benralizumab and Mepolizumab, humanized IgG antibodies directed against the IL-5 receptor and IL-5, have been approved for severe eosinophilic asthma. METHODS: Here we used a differential proteomic approach to analyse serum from patients with severe eosinophilic asthma treated with Benralizumab and Mepolizumab in a search for differential molecular modifications responsible of their effects. Enrichment analysis of differential proteins was performed for the two treatments. RESULTS AND DISCUSSION: After one month of Benralizumab treatment we detected up-regulation of certain protein species of the antioxidant ceruloplasmin. To investigate oxidative stress, we performed redox proteomics which detected lower oxidative burst after one month of Benralizumab treatment than in the pre-treatment phase or after one month of Mepolizumab therapy.


Assuntos
Asma/tratamento farmacológico , Ceruloplasmina/metabolismo , Interleucina-5/sangue , Estresse Oxidativo/efeitos dos fármacos , Receptores de Interleucina-5/sangue , Adulto , Anticorpos Monoclonais Humanizados/administração & dosagem , Asma/sangue , Asma/genética , Asma/patologia , Eosinófilos/metabolismo , Eosinófilos/patologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/sangue , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Oxirredução , Proteômica/métodos
13.
Int J Mol Sci ; 21(16)2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32784632

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a fibroproliferative disorder limited to the lung. New findings, starting from our proteomics studies on IPF, suggest that systemic involvement with altered molecular mechanisms and metabolic disorder is an underlying cause of fibrosis. The role of metabolic dysregulation in the pathogenesis of IPF has not been extensively studied, despite a recent surge of interest. In particular, our studies on bronchoalveolar lavage fluid have shown that the renin-angiotensin-aldosterone system (RAAS), the hypoxia/oxidative stress response, and changes in iron and lipid metabolism are involved in onset of IPF. These processes appear to interact in an intricate manner and to be related to different fibrosing pathologies not directly linked to the lung environment. The disordered metabolism of carbohydrates, lipids, proteins and hormones has been documented in lung, liver, and kidney fibrosis. Correcting these metabolic alterations may offer a new strategy for treating fibrosis. This paper focuses on the role of metabolic dysregulation in the pathogenesis of IPF and is a continuation of our previous studies, investigating metabolic dysregulation as a new target for fibrosis therapy.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Animais , Humanos , Fibrose Pulmonar Idiopática/patologia , Ferro/metabolismo , Metabolismo dos Lipídeos , Mitocôndrias/patologia , Estresse Oxidativo , Proteômica
14.
Lung ; 198(5): 761-765, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32691140

RESUMO

Benralizumab and mepolizumab are new therapies for severe eosinophilic asthma. They are both humanized IgG antibodies, targeting the IL-5 receptor and IL-5, respectively, suppressing the corresponding pathways. No specific biomarkers have been proposed to evaluate treatment response to benralizumab or mepolizumab. The aim of this proteomic study was to compare serum protein profiles of patients with severe eosinophilic asthma before and after anti-IL5 or anti-IL5R therapies. Proteomic analysis highlighted 22 differently abundant spots. Among the proteins identified, CAYP1, A1AT and A2M expression was significantly modified in both groups of patients after therapies while ceruloplasmin showed a significant modification in the group of benralizumab treatment. These differentially expressed proteins could be potential biomarkers of response to mepolizumab and benralizumab treatments and need further evaluation.


Assuntos
Anticorpos Monoclonais Humanizados , Asma , Proteínas de Ligação ao Cálcio/sangue , Eosinofilia , Interleucina-5/antagonistas & inibidores , alfa 1-Antitripsina/sangue , alfa-Macroglobulinas/agonistas , Adulto , Antiasmáticos/administração & dosagem , Antiasmáticos/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/imunologia , Asma/sangue , Asma/diagnóstico , Asma/tratamento farmacológico , Asma/fisiopatologia , Biomarcadores Farmacológicos/sangue , Monitoramento de Medicamentos/métodos , Eosinofilia/sangue , Eosinofilia/diagnóstico , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Proteômica/métodos , Índice de Gravidade de Doença , alfa-Macroglobulinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA