Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 275(1): 83-91, 2001 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-11574155

RESUMO

We report the identification, cloning and tissue distributions of ten novel human genes encoding G protein-coupled receptors (GPCRs) GPR78, GPR80, GPR81, GPR82, GPR93, GPR94, GPR95, GPR101, GPR102, GPR103 and a pseudogene, psi GPR79. Each novel orphan GPCR (oGPCR) gene was discovered using customized searches of the GenBank high-throughput genomic sequences database with previously known GPCR-encoding sequences. The expressed genes can now be used in assays to determine endogenous and pharmacological ligands. GPR78 shared highest identity with the oGPCR gene GPR26 (56% identity in the transmembrane (TM) regions). psi GPR79 shared highest sequence identity with the P2Y(2) gene and contained a frame-shift truncating the encoded receptor in TM5, demonstrating a pseudogene. GPR80 shared highest identity with the P2Y(1) gene (45% in the TM regions), while GPR81, GPR82 and GPR93 shared TM identities with the oGPCR genes HM74 (70%), GPR17 (30%) and P2Y(5) (40%), respectively. Two other novel GPCR genes, GPR94 and GPR95, encoded a subfamily with the genes encoding the UDP-glucose and P2Y(12) receptors (sharing >50% identities in the TM regions). GPR101 demonstrated only distant identities with other GPCR genes and GPR102 shared identities with GPR57, GPR58 and PNR (35-42% in the TM regions). GPR103 shared identities with the neuropeptide FF 2, neuropeptide Y2 and galanin GalR1 receptors (34-38% in the TM regions). Northern analyses revealed GPR78 mRNA expression in the pituitary and placenta and GPR81 expression in the pituitary. A search of the GenBank databases with the GPR82 sequence retrieved an identical sequence in an expressed sequence tag (EST) partially encoding GPR82 from human colonic tissue. The GPR93 sequence retrieved an identical, human EST sequence from human primary tonsil B-cells and an EST partially encoding mouse GPR93 from small intestinal tissue. GPR94 was expressed in the frontal cortex, caudate putamen and thalamus of brain while GPR95 was expressed in the human prostate and rat stomach and fetal tissues. GPR101 revealed mRNA transcripts in caudate putamen and hypothalamus. GPR103 mRNA signals were detected in the cortex, pituitary, thalamus, hypothalamus, basal forebrain, midbrain and pons.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Receptores de Superfície Celular/genética , Sequência de Aminoácidos , Mapeamento Cromossômico , Clonagem Molecular , DNA/química , DNA/genética , DNA Complementar/química , DNA Complementar/genética , Chaperona BiP do Retículo Endoplasmático , Feminino , Expressão Gênica , Humanos , Masculino , Dados de Sequência Molecular , Pseudogenes/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
2.
J Mol Biol ; 305(4): 741-56, 2001 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-11162089

RESUMO

The terminal half of the 5' untranslated region (UTR) in the (+)-strand RNA genome of tomato bushy stunt virus was analyzed for possible roles in viral RNA replication. Computer-aided thermodynamic analysis of secondary structure, phylogenetic comparisons for base-pair covariation, and chemical and enzymatic solution structure probing were used to analyze the 78 nucleotide long 5'-terminal sequence. The results indicate that this sequence adopts a branched secondary structure containing a three-helix junction core. The T-shaped domain (TSD) formed by this terminal sequence is closed by a prominent ten base-pair long helix, termed stem 1 (S1). Deletion of either the 5' or 3' segment forming S1 (coordinates 1-10 or 69-78, respectively) in a model subviral RNA replicon, i.e. a prototypical defective interfering (DI) RNA, reduced in vivo accumulation levels of this molecule approximately 20-fold. Compensatory-type mutational analysis of S1 within this replicon revealed a strong correlation between formation of the predicted S1 structure and efficient DI RNA accumulation. RNA decay studies in vivo did not reveal any notable changes in the physical stabilities of DI RNAs containing disrupted S1s, thus implicating RNA replication as the affected process. Further investigation revealed that destabilization of S1 in the (+)-strand was significantly more detrimental to DI RNA accumulation than (-)-strand destabilization, therefore S1-mediated activity likely functions primarily via the (+)-strand. The essential role of S1 in DI RNA accumulation prompted us to examine the 5'-proximal secondary structure of a previously identified mutant DI RNA, RNA B, that lacks the 5' UTR but is still capable of low levels of replication. Mutational analysis of a predicted S1-like element present within a cryptic 5'-terminal TSD confirmed the importance of the former in RNA B accumulation. Collectively, these data support a fundamental role for the TSD, and in particular its S1 subelement, in tombusvirus RNA replication.


Assuntos
Regiões 5' não Traduzidas/genética , Genoma Viral , RNA Viral/biossíntese , Tombusvirus/genética , Replicação Viral/genética , Regiões 5' não Traduzidas/biossíntese , Regiões 5' não Traduzidas/química , Regiões 5' não Traduzidas/metabolismo , Sequência de Bases , Sequência Conservada/genética , Dados de Sequência Molecular , Ensaios de Proteção de Nucleases , Conformação de Ácido Nucleico , Estabilidade de RNA , RNA Satélite/química , RNA Satélite/genética , RNA Satélite/metabolismo , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , Supressão Genética/genética , Termodinâmica , Tombusvirus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA