Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 12: 177, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-23031057

RESUMO

BACKGROUND: Small non-coding RNAs (smRNAs) are known to have major roles in gene regulation in eukaryotes. In plants, knowledge of the biogenesis and mechanisms of action of smRNA classes including microRNAs (miRNAs), short interfering RNAs (siRNAs), and trans-acting siRNAs (tasiRNAs) has been gained mostly through studies with Arabidopsis. In recent years, high throughput sequencing of smRNA populations has enabled extension of knowledge from model systems to plants with larger, more complex genomes. Soybean (Glycine max) now has many genomics resources available including a complete genome sequence and predicted gene models. Relatively little is known, however, about the full complement of its endogenous smRNAs populations and the silenced genes. RESULTS: Using Illumina sequencing and computational analysis, we characterized eight smRNA populations from multiple tissues and organs of soybean including developing seed and vegetative tissues. A total of 41 million raw sequence reads collapsed into 135,055 unique reads were mapped to the soybean genome and its predicted cDNA gene models. Bioinformatic analyses were used to distinguish miRNAs and siRNAs and to determine their genomic origins and potential target genes. In addition, we identified two soybean TAS3 gene homologs, the miRNAs that putatively guide cleavage of their transcripts, and the derived tasiRNAs that could target soybean genes annotated as auxin response factors. Tissue-differential expression based on the flux of normalized miRNA and siRNA abundances in the eight smRNA libraries was evident, some of which was confirmed by smRNA blotting. Our global view of these smRNA populations also revealed that the size classes of smRNAs varied amongst different tissues, with the developing seed and seed coat having greater numbers of unique smRNAs of the 24-nt class compared to the vegetative tissues of germinating seedlings. The 24-nt class is known to be derived from repetitive elements including transposons. Detailed analysis of the size classes associated with ribosomal RNAs and transposable element families showed greater diversity of smRNAs in the 22- and 24-nt size classes. CONCLUSIONS: The flux of endogenous smRNAs within multiple stages and tissues of seed development was contrasted with vegetative tissues of soybean, one of the dominant sources of protein and oil in world markets. The smRNAs varied in size class, complexity of origins, and possible targets. Sequencing revealed tissue-preferential expression for certain smRNAs and expression differences among closely related miRNA family members.


Assuntos
Glycine max/genética , Especificidade de Órgãos/genética , RNA de Plantas/genética , Sementes/genética , Pareamento de Bases/genética , Sequência de Bases , Biologia Computacional , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas de Plantas/química , RNA de Plantas/química , RNA de Plantas/metabolismo , RNA Ribossômico/genética , RNA Interferente Pequeno/genética , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/genética , Retroelementos/genética , Alinhamento de Sequência , Análise de Sequência de RNA
2.
Proc Natl Acad Sci U S A ; 109(26): 10444-9, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22689990

RESUMO

Small RNAs (sRNAs) are hypothesized to contribute to hybrid vigor because they maintain genome integrity, contribute to genetic diversity, and control gene expression. We used Illumina sequencing to assess how sRNA populations vary between two maize inbred lines (B73 and Mo17) and their hybrid. We sampled sRNAs from the seedling shoot apex and the developing ear, two rapidly growing tissues that program the greater growth of maize hybrids. We found that parental differences in siRNAs primarily originate from repeat regions. Although the maize genome contains greater number and complexity of repeats compared with Arabidopsis or rice, we confirmed that, like these simpler plant genomes, 24-nt siRNAs whose abundance differs between maize parents also show a trend of down-regulation following hybridization. Surprisingly, hybrid vigor is fully maintained when 24-nt siRNAs are globally reduced by mutation of the RNA-dependent RNA polymerase 2 encoded by modifier of paramutation1 (mop1). We also discovered that 21-22-nt siRNAs derived from a number of distinct retrotransposon families differentially accumulate between B73 and Mo17 as well as their hybrid. Thus, maize possesses a unique source of genetic variation for regulating transposons and genes at a genomic scale, which may contribute to its high degree of observed heterosis.


Assuntos
Hibridização Genética , RNA de Plantas/genética , Zea mays/genética , Vigor Híbrido , RNA Interferente Pequeno , Retroelementos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA