RESUMO
The SNARE proteins are central in membrane fusion and, at the synapse, neurotransmitter release. However, their involvement in the dual regulation of the synchronous release while maintaining a pool of readily releasable vesicles remains unclear. Using a chimeric approach, we performed a systematic analysis of the SNARE domain of STX1A by exchanging the whole SNARE domain or its N- or C-terminus subdomains with those of STX2. We expressed these chimeric constructs in STX1-null hippocampal mouse neurons. Exchanging the C-terminal half of STX1's SNARE domain with that of STX2 resulted in a reduced RRP accompanied by an increased release rate, while inserting the C-terminal half of STX1's SNARE domain into STX2 leads to an enhanced priming and decreased release rate. Additionally, we found that the mechanisms for clamping spontaneous, but not for Ca2+-evoked release, are particularly susceptible to changes in specific residues on the outer surface of the C-terminus of the SNARE domain of STX1A. Particularly, mutations of D231 and R232 affected the fusogenicity of the vesicles. We propose that the C-terminal half of the SNARE domain of STX1A plays a crucial role in the stabilization of the RRP as well as in the clamping of spontaneous synaptic vesicle fusion through the regulation of the energetic landscape for fusion, while it also plays a covert role in the speed and efficacy of Ca2+-evoked release.
Assuntos
Fusão de Membrana , Vesículas Sinápticas , Sintaxina 1 , Animais , Camundongos , Constrição , Camundongos Knockout , Neurotransmissores , Proteínas SNARE , Sintaxina 1/genéticaRESUMO
SNAREs are undoubtedly one of the core elements of synaptic transmission. Contrary to the well characterized function of their SNARE domains bringing the plasma and vesicular membranes together, the level of contribution of their juxtamembrane domain (JMD) and the transmembrane domain (TMD) to the vesicle fusion is still under debate. To elucidate this issue, we analyzed three groups of STX1A mutations in cultured mouse hippocampal neurons: (1) elongation of STX1A's JMD by three amino acid insertions in the junction of SNARE-JMD or JMD-TMD; (2) charge reversal mutations in STX1A's JMD; and (3) palmitoylation deficiency mutations in STX1A's TMD. We found that both JMD elongations and charge reversal mutations have position-dependent differential effects on Ca2+-evoked and spontaneous neurotransmitter release. Importantly, we show that STX1A's JMD regulates the palmitoylation of STX1A's TMD and loss of STX1A palmitoylation either through charge reversal mutation K260E or by loss of TMD cysteines inhibits spontaneous vesicle fusion. Interestingly, the retinal ribbon specific STX3B has a glutamate in the position corresponding to the K260E mutation in STX1A and mutating it with E259K acts as a molecular on-switch. Furthermore, palmitoylation of post-synaptic STX3A can be induced by the exchange of its JMD with STX1A's JMD together with the incorporation of two cysteines into its TMD. Forced palmitoylation of STX3A dramatically enhances spontaneous vesicle fusion suggesting that STX1A regulates spontaneous release through two distinct mechanisms: one through the C-terminal half of its SNARE domain and the other through the palmitoylation of its TMD.
Assuntos
Lipoilação , Fusão de Membrana , Animais , Mamíferos/metabolismo , Fusão de Membrana/fisiologia , Camundongos , Neurônios/fisiologia , Proteínas SNARE/metabolismo , Sintaxina 1/genética , Sintaxina 1/metabolismoRESUMO
Syntaxin-1 (STX1) and Munc18-1 are two requisite components of synaptic vesicular release machinery, so much so synaptic transmission cannot proceed in their absence. They form a tight complex through two major binding modes: through STX1's N-peptide and through STX1's closed conformation driven by its Habc- domain. However, physiological roles of these two reportedly different binding modes in synapses are still controversial. Here we characterized the roles of STX1's N-peptide, Habc-domain, and open conformation with and without N-peptide deletion using our STX1-null mouse model system and exogenous reintroduction of STX1A mutants. We show, on the contrary to the general view, that the Habc-domain is absolutely required and N-peptide is dispensable for synaptic transmission. However, STX1A's N-peptide plays a regulatory role, particularly in the Ca2+-sensitivity and the short-term plasticity of vesicular release, whereas STX1's open conformation governs the vesicle fusogenicity. Strikingly, we also show neurotransmitter release still proceeds when the two interaction modes between STX1A and Munc18-1 are presumably intervened, necessitating a refinement of the conceptualization of STX1A-Munc18-1 interaction.
Assuntos
Proteínas Munc18/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Sinapses/metabolismo , Sintaxina 1/metabolismo , Animais , Transporte Biológico , Células Cultivadas , Fusão de Membrana , Camundongos , Peptídeos/química , Peptídeos/genética , Ligação Proteica , Conformação Proteica , Sinapses/genética , Transmissão Sináptica , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sintaxina 1/química , Sintaxina 1/genéticaRESUMO
Syntaxin 1B (STX1B) is a core component of the N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that is critical for the exocytosis of synaptic vesicles in the presynapse. SNARE-mediated vesicle fusion is assisted by Munc18-1, which recruits STX1B in the auto-inhibited conformation, while Munc13 catalyses the fast and efficient pairing of helices during SNARE complex formation. Mutations within the STX1B gene are associated with epilepsy. Here we analysed three STX1B mutations by biochemical and electrophysiological means. These three paradigmatic mutations cause epilepsy syndromes of different severity, from benign fever-associated seizures in childhood to severe epileptic encephalopathies. An insertion/deletion (K45/RMCIE, L46M) mutation (STX1BInDel), causing mild epilepsy and located in the early helical Habc domain, leads to an unfolded protein unable to sustain neurotransmission. STX1BG226R, causing epileptic encephalopathies, strongly compromises the interaction with Munc18-1 and reduces expression of both proteins, the size of the readily releasable pool of vesicles, and Ca2+-triggered neurotransmitter release when expressed in STX1-null neurons. The mutation STX1BV216E, also causing epileptic encephalopathies, only slightly diminishes Munc18-1 and Munc13 interactions, but leads to enhanced fusogenicity and increased vesicular release probability, also in STX1-null neurons. Even though the synaptic output remained unchanged in excitatory hippocampal STX1B+/- neurons exogenously expressing STX1B mutants, the manifestation of clear and distinct molecular disease mechanisms by these mutants suggest that certain forms of epilepsies can be conceptualized by assigning mutations to structurally sensitive regions of the STX1B-Munc18-1 interface, translating into distinct neurophysiological phenotypes.
Assuntos
Epilepsia/genética , Epilepsia/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Sintaxina 1/genética , Animais , Genótipo , Camundongos , Mutação , FenótipoRESUMO
The tight spatial coupling of synaptic vesicles and voltage-gated Ca2+ channels (CaVs) ensures efficient action potential-triggered neurotransmitter release from presynaptic active zones (AZs). Rab-interacting molecule-binding proteins (RIM-BPs) interact with Ca2+ channels and via RIM with other components of the release machinery. Although human RIM-BPs have been implicated in autism spectrum disorders, little is known about the role of mammalian RIM-BPs in synaptic transmission. We investigated RIM-BP2-deficient murine hippocampal neurons in cultures and slices. Short-term facilitation is significantly enhanced in both model systems. Detailed analysis in culture revealed a reduction in initial release probability, which presumably underlies the increased short-term facilitation. Superresolution microscopy revealed an impairment in CaV2.1 clustering at AZs, which likely alters Ca2+ nanodomains at release sites and thereby affects release probability. Additional deletion of RIM-BP1 does not exacerbate the phenotype, indicating that RIM-BP2 is the dominating RIM-BP isoform at these synapses.
Assuntos
Canais de Cálcio/metabolismo , Hipocampo/metabolismo , Sinapses/metabolismo , Potenciais de Ação , Animais , Cálcio/metabolismo , Células Cultivadas , Fenômenos Eletrofisiológicos , Feminino , Deleção de Genes , Expressão Gênica , Marcação de Genes , Loci Gênicos , Masculino , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Transporte Proteico , Transmissão Sináptica/genética , Vesículas Sinápticas/metabolismoRESUMO
UNLABELLED: Neurotransmitter release requires the formation of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes by SNARE proteins syntaxin-1 (Stx1), synaptosomal-associated protein 25 (SNAP-25), and synaptobrevin-2 (Syb2). In mammalian systems, loss of SNAP-25 or Syb2 severely impairs neurotransmitter release; however, complete loss of function studies for Stx1 have been elusive due to the functional redundancy between Stx1 isoforms Stx1A and Stx1B and the embryonic lethality of Stx1A/1B double knock-out (DKO) mice. Here, we studied the roles of Stx1 in neuronal maintenance and neurotransmitter release in mice with constitutive or conditional deletion of Stx1B on an Stx1A-null background. Both constitutive and postnatal loss of Stx1 severely compromised neuronal viability in vivo and in vitro, indicating an obligatory role of Stx1 for maintenance of developing and mature neurons. Loss of Munc18-1, a high-affinity binding partner of Stx1, also showed severely impaired neuronal viability, but with a slower time course compared with Stx1A/1B DKO neurons, and exogenous Stx1A or Stx1B expression significantly delayed Munc18-1-dependent lethality. In addition, loss of Stx1 completely abolished fusion-competent vesicles and severely impaired vesicle docking, demonstrating its essential roles in neurotransmission. Putative partial SNARE complex assembly with the SNARE motif mutant Stx1A(AV) (A240V, V244A) was not sufficient to rescue neurotransmission despite full recovery of vesicle docking and neuronal survival. Together, these data suggest that Stx1 has independent functions in neuronal maintenance and neurotransmitter release and complete SNARE complex formation is required for vesicle fusion and priming, whereas partial SNARE complex formation is sufficient for vesicle docking and neuronal maintenance. SIGNIFICANCE STATEMENT: Syntaxin-1 (Stx1) is a component of the synaptic vesicle soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex and is essential for neurotransmission. We present the first detailed loss-of-function characterization of the two Stx1 isoforms in central mammalian neurons. We show that Stx1 is fundamental for maintenance of developing and mature neurons and also for vesicle docking and neurotransmission. We also demonstrate that neuronal maintenance and neurotransmitter release are regulated by Stx1 through independent functions. Furthermore, we show that SNARE complex formation is required for vesicle fusion, whereas partial SNARE complex formation is sufficient for vesicle docking and neuronal maintenance. Therefore, our work provides insights into differential functions of Stx1 in neuronal maintenance and neurotransmission, with the latter explored further into its functions in vesicle docking and fusion.
Assuntos
Fusão de Membrana/fisiologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/fisiologia , Sintaxina 1/metabolismo , Animais , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Masculino , Camundongos , Neurogênese/fisiologia , Neurônios/citologia , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestruturaRESUMO
STX1 is a major neuronal syntaxin protein located at the plasma membrane of the neuronal tissues. Rodent STX1 has two highly similar paralogs, STX1A and STX1B, that are thought to be functionally redundant. Interestingly, some studies have shown that the distribution patterns of STX1A and STX1B at the central and peripheral nervous systems only partially overlapped, implying that there might be differential functions between these paralogs. In the current study, we generated an STX1B knockout (KO) mouse line and studied the impact of STX1B removal in neurons of several brain regions and the neuromuscular junction (NMJ). We found that either complete removal of STX1B or selective removal of it from forebrain excitatory neurons in mice caused premature death. Autaptic hippocampal and striatal cultures derived from STX1B KO mice still maintained efficient neurotransmission compared with neurons from STX1B wild-type and heterozygous mice. Interestingly, examining high-density cerebellar cultures revealed a decrease in the spontaneous GABAergic transmission frequency, which was most likely due to a lower number of neurons in the STX1B KO cultures, suggesting that STX1B is essential for neuronal survival in vitro. Moreover, our study also demonstrated that although STX1B is dispensable for the formation of the mouse NMJ, it is required to maintain the efficiency of neurotransmission at the nerve-muscle synapse.