Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(4): 991-1014, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37651334

RESUMO

Accurate Crop Evapotranspiration (ETc) estimation is crucial for understanding hydrological and agrometeorological processes, yet it's challenged by multiple parameters, data variations, and lack of continuity. These limitations restrict numerical methods application. To address this, the study aims to develop and assess ML models for daily maize ETc in semi-arid areas, utilizing varied weather inputs. Five ML models viz., Category Boosting (CB), Linear Regression (LR), Support Vector Machine (SVM), Artificial Neural Network (ANN), and Stochastic Gradient Descent (SGD) were developed and validated for the ICAR-IARI, New Delhi, Research Station. Penman-Monteith (PM) model estimated ETc values are used as the standard for comparing the performance of the ML model values. Results revealed that the SVM model achieved the highest coefficient of determination (R2) among all models, with a value of 0.987. Furthermore, the SVM model exhibited the lowest model errors (MAE = 0.121 mm day-1, RMSE = 0.172 mm day-1, and MAPE = 4.37%) compared to other models. The ANN model also demonstrated promising results, comparable to the SVM model. Notably, the wind speed parameter was found most influential input parameter. In conclusion, SVM or ANN could be considered reliable alternative methods for the accurate estimation of kharif maize crop ETc in the semi-arid climate.


Assuntos
Hidrologia , Zea mays , Modelos Lineares , Aprendizado de Máquina , Redes Neurais de Computação
2.
Sci Rep ; 10(1): 21593, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299096

RESUMO

Foot-and-mouth disease (FMD) endangers a large number of livestock populations across the globe being a highly contagious viral infection in wild and domestic cloven-hoofed animals. It adversely affects the socioeconomic status of millions of households. Vaccination has been used to protect animals against FMD virus (FMDV) to some extent but the effectiveness of available vaccines has been decreased due to high genetic variability in the FMDV genome. Another key aspect that the current vaccines are not favored is they do not provide the ability to differentiate between infected and vaccinated animals. Thus, RNA interference (RNAi) being a potential strategy to control virus replication, has opened up a new avenue for controlling the viral transmission. Hence, an attempt has been made here to establish the role of RNAi in therapeutic developments for FMD by computationally identifying (i) microRNA (miRNA) targets in FMDV using target prediction algorithms, (ii) targetable genomic regions in FMDV based on their dissimilarity with the host genome and, (iii) plausible anti-FMDV miRNA-like simulated nucleotide sequences (SNSs). The results revealed 12 mature host miRNAs that have 284 targets in 98 distinct FMDV genomic sequences. Wet-lab validation for anti-FMDV properties of 8 host miRNAs was carried out and all were observed to confer variable magnitude of antiviral effect. In addition, 14 miRBase miRNAs were found with better target accessibility in FMDV than that of Bos taurus. Further, 8 putative targetable regions having sense strand properties of siRNAs were identified on FMDV genes that are highly dissimilar with the host genome. A total of 16 SNSs having > 90% identity with mature miRNAs were also identified that have targets in FMDV genes. The information generated from this study is populated at http://bioinformatics.iasri.res.in/fmdisc/ to cater the needs of biologists, veterinarians and animal scientists working on FMD.


Assuntos
Doenças dos Bovinos/terapia , Febre Aftosa/terapia , Terapêutica com RNAi , Algoritmos , Animais , Bovinos , Doenças dos Bovinos/genética , Biologia Computacional , Febre Aftosa/genética , Vírus da Febre Aftosa/genética
3.
J Appl Stat ; 34(5): 577-584, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-38817917

RESUMO

Competition or interference occurs when the responses to treatments in experimental units are affected by the treatments in neighbouring units. This may contribute to variability in experimental results and lead to substantial losses in efficiency. The study of a competing situation needs designs in which the competing units appear in a predetermined pattern. This paper deals with optimality aspects of circular block designs for studying the competition among treatments applied to neighbouring experimental units. The model considered is a four-way classified model consisting of direct effect of the treatment applied to a particular plot, the effect of those treatments applied to the immediate left and right neighbouring units and the block effect. Conditions have been obtained for the block design to be universally optimal for estimating direct and neighbour effects. Some classes of balanced and strongly balanced complete block designs have been identified to be universally optimal for the estimation of direct, left and right neighbour effects and a list of universally optimal designs for v<20 and r<100 has been prepared.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA