Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Indian J Community Med ; 49(1): 96-103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38425947

RESUMO

Background: COVID-19 has become a global pandemic, prompting lockdowns in practically every country. To prevent the spread of the disease, India has enforced a rigorous nationwide lockdown that commenced in March 2020. The lockdown imposed amid the pandemic ensured that most commercial activities and vehicle transportation ceased, resulting in a significant reduction in air pollution levels. Material and Methods: The value of air pollutants PM10, PM2.5, NO2, and SO2 from January to May 2020 was obtained from the Indian Central Pollution Control Board. Before lockdown and during lockdown, relative fluctuations in ambient concentrations of four air contaminants were investigated. The Box-Jenkins approach was used to estimate future air pollution data points using time series data analysis. Results: The PM10 level reduced by 61%, 30%, 68%, 37%, and 43% in the selected cities, respectively. Comparison of other pollutant concentrations before and after the lockdown also found a reduction in ambient pollutant concentrations, resulting in improved air quality. Inference of predicted model values to observed values revealed a significant increase in the concentrations of all pollutants. The percentage increases in AQImean from predicted to observed values were 206% in Ghaziabad, 148% in Delhi, 59% in Hyderabad, and 160% in Cochin. Conclusion: The strict lockdown has resulted in a significant drop in air pollutant levels. Upgrading present technologies could help keep pollution to a minimum of 37% under control. The findings would prompt the government to consider how to strictly reduce vehicle and industrial pollution to improve air quality and maintain improved public health.

2.
Cancer Metastasis Rev ; 43(1): 115-133, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37768439

RESUMO

B7-H3 (B7 homology 3 protein) is an important transmembrane immunoregulatory protein expressed in immune cells, antigen-presenting cells, and tumor cells. Studies reveal a multifaceted role of B7-H3 in tumor progression by modulating various cancer hallmarks involving angiogenesis, immune evasion, and tumor microenvironment, and it is also a promising candidate for cancer immunotherapy. In colorectal cancer (CRC), B7-H3 has been associated with various aspects of disease progression, such as evasion of tumor immune surveillance, tumor-node metastasis, and poor prognosis. Strategies to block or interfere with B7-H3 in its immunological and non-immunological functions are under investigation. In this study, we explore the role of B7-H3 in tumor plasticity, emphasizing tumor glucose metabolism, angiogenesis, epithelial-mesenchymal transition, cancer stem cells, apoptosis, and changing immune signatures in the tumor immune landscape. We discuss how B7-H3-induced tumor plasticity contributes to immune evasion, metastasis, and therapy resistance. Furthermore, we delve into the most recent advancements in targeting B7-H3-based tumor immunotherapy as a potential approach to CRC treatment.


Assuntos
Antígenos B7 , Neoplasias Colorretais , Humanos , Antígenos B7/metabolismo , Neoplasias Colorretais/patologia , Imunoterapia , Microambiente Tumoral
3.
Biomed Pharmacother ; 164: 114911, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37224753

RESUMO

Breast cancers (BCs) remain the leading cause of cancer-related deaths among women worldwide. Among the different types of BCs, treating the highly aggressive, invasive, and metastatic triple-negative BCs (TNBCs) that do not respond to hormonal/human epidermal growth factor receptor 2 (HER2) targeted interventions since they lack ER/PR/HER2 receptors remains challenging. While almost all BCs depend on glucose metabolism for their proliferation and survival, studies indicate that TNBCs are highly dependent on glucose metabolism compared to non-TNBC malignancies. Hence, limiting/inhibiting glucose metabolism in TNBCs should curb cell proliferation and tumor growth. Previous reports, including ours, have shown the efficacy of metformin, the most widely prescribed antidiabetic drug, in reducing cell proliferation and growth in MDA-MB-231 and MDA-MB-468 TNBC cells. In the current study, we investigated and compared the anticancer effects of either metformin (2 mM) in glucose-starved or 2-deoxyglucose (10 mM; glycolytic inhibitor; 2DG) exposed MDA-MB-231 and MDA-MB-468 TNBC cells. Assays for cell proliferation, rate of glycolysis, cell viability, and cell-cycle analysis were performed. The status of proteins of the mTOR pathway was assessed by Western blot analysis. Metformin treatment in glucose-starved and 2DG (10 mM) exposed TNBC cells inhibited the mTOR pathway compared to non-treated glucose-starved cells or 2DG/metformin alone treated controls. Cell proliferation is also significantly reduced under these combination treatment conditions. The results indicate that combining a glycolytic inhibitor and metformin could prove an efficient therapeutic approach for treating TNBCs, albeit the efficacy of the combination treatment may depend on metabolic heterogeneity across various subtypes of TNBCs.


Assuntos
Metformina , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Metformina/farmacologia , Metformina/uso terapêutico , Desoxiglucose/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Serina-Treonina Quinases TOR , Glucose/metabolismo
4.
Brain ; 146(6): 2389-2398, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36415957

RESUMO

More than half of adults with epilepsy undergoing resective epilepsy surgery achieve long-term seizure freedom and might consider withdrawing antiseizure medications. We aimed to identify predictors of seizure recurrence after starting postoperative antiseizure medication withdrawal and develop and validate predictive models. We performed an international multicentre observational cohort study in nine tertiary epilepsy referral centres. We included 850 adults who started antiseizure medication withdrawal following resective epilepsy surgery and were free of seizures other than focal non-motor aware seizures before starting antiseizure medication withdrawal. We developed a model predicting recurrent seizures, other than focal non-motor aware seizures, using Cox proportional hazards regression in a derivation cohort (n = 231). Independent predictors of seizure recurrence, other than focal non-motor aware seizures, following the start of antiseizure medication withdrawal were focal non-motor aware seizures after surgery and before withdrawal [adjusted hazard ratio (aHR) 5.5, 95% confidence interval (CI) 2.7-11.1], history of focal to bilateral tonic-clonic seizures before surgery (aHR 1.6, 95% CI 0.9-2.8), time from surgery to the start of antiseizure medication withdrawal (aHR 0.9, 95% CI 0.8-0.9) and number of antiseizure medications at time of surgery (aHR 1.2, 95% CI 0.9-1.6). Model discrimination showed a concordance statistic of 0.67 (95% CI 0.63-0.71) in the external validation cohorts (n = 500). A secondary model predicting recurrence of any seizures (including focal non-motor aware seizures) was developed and validated in a subgroup that did not have focal non-motor aware seizures before withdrawal (n = 639), showing a concordance statistic of 0.68 (95% CI 0.64-0.72). Calibration plots indicated high agreement of predicted and observed outcomes for both models. We show that simple algorithms, available as graphical nomograms and online tools (predictepilepsy.github.io), can provide probabilities of seizure outcomes after starting postoperative antiseizure medication withdrawal. These multicentre-validated models may assist clinicians when discussing antiseizure medication withdrawal after surgery with their patients.


Assuntos
Epilepsias Parciais , Epilepsia Generalizada , Epilepsia , Humanos , Adulto , Anticonvulsivantes/efeitos adversos , Recidiva Local de Neoplasia/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia/cirurgia , Convulsões/tratamento farmacológico , Epilepsia Generalizada/tratamento farmacológico
5.
Amyloid ; 30(2): 141-152, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36286264

RESUMO

BACKGROUND: The amyloidogenic transthyretin (TTR) variant, V122I, occurs in 4% of the African American population and frequently presents as a restricted cardiomyopathy. While heterozygosity for TTR V122I predominates, several compound heterozygous cases have been previously described. Herein, we detail features of ATTRv amyloidosis associated with novel compound heterozygous TTR mutation, T60I/V122I and provide evidence supporting the amyloidogenecity of T60I. METHODS: A 63-year-old African American female presented with atrial fibrillation, congestive heart failure, autonomic and peripheral neuropathy. In vitro studies of TTR T60I and V122I were undertaken to compare the biophysical properties of the proteins. RESULTS: Congophilic deposits in a rectal biopsy were immunohistochemically positive for TTR. Serum screening by isoelectric focussing revealed two TTR variants in the absence of wild-type protein. DNA sequencing identified compound heterozygous TTR gene mutations, c.239C > T and c.424G > A. Adipose amyloid deposits were composed of both T60I and V122I. While kinetic stabilities of T60I and V122I variants were similar, distinct thermodynamic stabilities and amyloid growth kinetics were observed. CONCLUSIONS: This report provides clinical and experimental results supporting the amyloidogenic nature of a novel TTR T60I variant. In vitro data indicate that the destabilising effect of individual T60I and V122I variants appears to be additive rather than synergistic.


Assuntos
Neuropatias Amiloides Familiares , Amiloidose , Insuficiência Cardíaca , Doenças do Sistema Nervoso Periférico , Humanos , Feminino , Pessoa de Meia-Idade , Amiloidose/metabolismo , Insuficiência Cardíaca/genética , Amiloide/metabolismo , Heterozigoto , Doenças do Sistema Nervoso Periférico/complicações , Pré-Albumina/genética , Pré-Albumina/metabolismo , Neuropatias Amiloides Familiares/genética
6.
Biomolecules ; 12(11)2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358930

RESUMO

It is a well-accepted fact that obesity and diabetes increase the risk of incidence of different cancers and their progression, leading to a decrease in the quality of life among affected cancer patients. In addition to decreasing the risk of cancers, maintaining a healthy body mass index (BMI)/body weight and/or blood glucose levels within the normal range critically impacts the response to anti-cancer therapy among affected individuals. A cancer patient managing their body weight and maintaining blood glucose control responds better to anti-cancer therapy than obese individuals and those whose blood glucose levels remain higher than normal during therapeutic intervention. In some cases, anti-diabetic/glucose-lowering drugs, some of which are also used to promote weight loss, were found to possess anti-cancer potential themselves and/or support anti-cancer therapy when used to treat such patients. On the other hand, certain glucose-lowering drugs promoted the cancer phenotype and risked cancer progression when used for treatment. Tirzepatide (TRZD), the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) agonist, has recently gained interest as a promising injectable drug for the treatment of type 2 diabetes and was approved by the FDA after successful clinical trials (SURPASS 1/2/3/4 and 5, NCT03954834, NCT03987919, NCT03882970, NCT03730662, and NCT04039503). In addition, the reports from the SURMOUNT-1 clinical trial (NCT04184622) support the use of TRZD as an anti-obesity drug. In the current review article, we examine the possibility and molecular mechanisms of how TRZD intervention could benefit cancer therapeutics or increase the risk of cancer progression when used as an anti-diabetic drug in diabetic patients.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Glicemia , Qualidade de Vida , Redução de Peso , Obesidade/complicações , Obesidade/tratamento farmacológico , Glucose , Neoplasias/tratamento farmacológico
7.
Vaccines (Basel) ; 10(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335086

RESUMO

The COVID-19 vaccines currently in use have undoubtedly played the most significant role in combating the SARS-CoV-2 virus and reducing disease severity and the risk of death among those affected, especially among those with pre-existing conditions, such as diabetes. The management of blood glucose levels has become critical in the context of the COVID-19 pandemic, where data show two- to threefold higher intensive care hospital admissions and more than twice the mortality rate among diabetic COVID-19 patients when compared with their nondiabetic counterparts. Furthermore, new-onset diabetes and severe hyperglycemia-related complications, such as hyperosmolar hyperglycemic syndrome (HHS) and diabetic ketoacidosis (DKA), were reported in COVID-19 patients. However, irrespective of the kind of vaccine and dosage number, possible vaccination-induced hyperglycemia and associated complications were reported among vaccinated individuals. The current article summarizes the available case reports on COVID-19 vaccination-induced hyperglycemia, the possible molecular mechanism responsible for this phenomenon, and the outstanding questions that need to be addressed and discusses the need to identify at-risk individuals and promote postvaccination monitoring/surveillance among at-risk individuals.

8.
Cancers (Basel) ; 13(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208645

RESUMO

Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.

9.
PLoS Pathog ; 17(6): e1009634, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34157054

RESUMO

Coronavirus Disease 2019 (COVID-19), caused by a new strain of coronavirus called Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was declared a pandemic by WHO on March 11, 2020. Soon after its emergence in late December 2019, it was noticed that diabetic individuals were at an increased risk of COVID-19-associated complications, ICU admissions, and mortality. Maintaining proper blood glucose levels using insulin and/or other oral antidiabetic drugs (such as Metformin) reduced the detrimental effects of COVID-19. Interestingly, in diabetic COVID-19 patients, while insulin administration was associated with adverse outcomes, Metformin treatment was correlated with a significant reduction in disease severity and mortality rates among affected individuals. Metformin was extensively studied for its antioxidant, anti-inflammatory, immunomodulatory, and antiviral capabilities that would explain its ability to confer cardiopulmonary and vascular protection in COVID-19. Here, we describe the various possible molecular mechanisms that contribute to Metformin therapy's beneficial effects and lay out the scientific basis of repurposing Metformin for use in COVID-19 patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Complicações do Diabetes/tratamento farmacológico , Metformina/uso terapêutico , Animais , COVID-19/complicações , Reposicionamento de Medicamentos , Humanos
10.
Trends Microbiol ; 29(10): 894-907, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33785249

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections present with increased disease severity and poor clinical outcomes in diabetic patients compared with their nondiabetic counterparts. Diabetes/hyperglycemia-triggered endothelial dysfunction and hyperactive inflammatory and immune responses are correlated to twofold to threefold higher intensive care hospitalizations and more than twice the mortality among diabetic coronavirus disease 2019 (COVID-19) patients. While comorbidities such as obesity, cardiovascular disease, and hypertension worsen the prognosis of diabetic COVID-19 patients, COVID-19 infections are also associated with new-onset diabetes, severe metabolic complications, and increased thrombotic events in the backdrop of aberrant endothelial function. While several antidiabetic medications are used to manage blood glucose levels, we discuss the multifaceted ability of metformin to control blood glucose levels and possibly attenuate endothelial dysfunction, inhibit viral entry and infection, and modify inflammatory and immune responses during SARS-CoV-2 infections. These actions make metformin a viable candidate drug to be considered for repurposing and gaining ground against the SARS-CoV-2-induced tsunami in diabetic COVID-19 patients.


Assuntos
COVID-19/complicações , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/administração & dosagem , Metformina/administração & dosagem , Animais , Glicemia/metabolismo , COVID-19/metabolismo , COVID-19/virologia , Diabetes Mellitus/metabolismo , Reposicionamento de Medicamentos , Humanos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
11.
Cancers (Basel) ; 13(2)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33430318

RESUMO

Tumor cells develop several metabolic reprogramming strategies, such as increased glucose uptake and utilization via aerobic glycolysis and fermentation of glucose to lactate; these lead to a low pH environment in which the cancer cells thrive and evade apoptosis. These characteristics of tumor cells are known as the Warburg effect. Adaptive metabolic alterations in cancer cells can be attributed to mutations in key metabolic enzymes and transcription factors. The features of the Warburg phenotype may serve as promising markers for the early detection and treatment of tumors. Besides, the glycolytic process of tumors is reversible and could represent a therapeutic target. So-called mono-target therapies are often unsafe and ineffective, and have a high prevalence of recurrence. Their success is hindered by the ability of tumor cells to simultaneously develop multiple chemoresistance pathways. Therefore, agents that modify several cellular targets, such as energy restriction to target tumor cells specifically, have therapeutic potential. Resveratrol, a natural active polyphenol found in grapes and red wine and used in many traditional medicines, is known for its ability to target multiple components of signaling pathways in tumors, leading to the suppression of cell proliferation, activation of apoptosis, and regression in tumor growth. Here, we describe current knowledge on the various mechanisms by which resveratrol modulates glucose metabolism, its potential as an imitator of caloric restriction, and its therapeutic capacity in tumors.

12.
Artigo em Inglês | MEDLINE | ID: mdl-33364523

RESUMO

The circadian clock, which generates the internal daily rhythm largely mediated through release of melatonin, can be disrupted in various ways. Multiple factors result in a disruption of the circadian cycle in the clinical context, of interest are anti-cancer drugs such as cisplatin. Cisplatin modulates the circadian clock through two mechanisms: 1) the circadian clock control of DNA excision repair and 2) the effect of circadian clock disruption on apoptosis. Cisplatin can stimulate multiple classified molecules, including DNA repair factors, DNA damage recognition factors and transcription factors in drug resistance and cisplatin-induced signal transduction. These factors interact with each other and can be transformed by DNA damage. Hence, these molecular interactions are intimately involved in cell proliferation and damage-induced apoptosis. Cisplatin has a dual-effect on circadian genes: upregulation of CLOCK expression causes an increase in proliferation but upregulation of BMAL1 expression causes an increase in apoptosis. Therefore, the interference of circadian genes by cisplatin can have multiple, opposing effects on apoptosis and cell proliferation, which may have unintended pro-cancer effects. Melatonin and intracellular Ca2+ also have a dual-effect on cell proliferation and apoptosis and can disrupt circadian rhythms.

13.
J Cancer Res Clin Oncol ; 146(12): 3079-3096, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32902794

RESUMO

PURPOSE: The formation of new blood vessels from previous ones, angiogenesis, is critical in tissue repair, expansion or remodeling in physiological processes and in various pathologies including cancer. Despite that, the development of anti-angiogenic drugs has great potential as the treatment of cancer faces many problems such as development of the resistance to treatment or an improperly selected therapy approach. An evaluation of predictive markers in personalized medicine could significantly improve treatment outcomes in many patients. METHODS: This comprehensive review emphasizes the anticancer potential of flavonoids mediated by their anti-angiogenic efficacy evaluated in current preclinical and clinical cancer research. RESULTS AND CONCLUSION: Flavonoids are important groups of phytochemicals present in common diet. Flavonoids show significant anticancer effects. The anti-angiogenic effects of flavonoids are currently a widely discussed topic of preclinical cancer research. Flavonoids are able to regulate the process of tumor angiogenesis through modulation of signaling molecules such as VEGF, MMPs, ILs, HIF or others. However, the evaluation of the anti-angiogenic potential of flavonoids within the clinical studies is not frequently discussed and is still of significant scientific interest.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Flavonoides/uso terapêutico , Neoplasias/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Humanos , Interleucinas/genética , Metaloproteinases da Matriz/genética , Neoplasias/genética , Neoplasias/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética
14.
Cancers (Basel) ; 12(9)2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32883003

RESUMO

Despite the leaps and bounds in achieving success in the management and treatment of breast cancers through surgery, chemotherapy, and radiotherapy, breast cancer remains the most frequently occurring cancer in women and the most common cause of cancer-related deaths among women. Systemic therapeutic approaches, such as chemotherapy, although beneficial in treating and curing breast cancer subjects with localized breast tumors, tend to fail in metastatic cases of the disease due to (a) an acquired resistance to the chemotherapeutic drug and (b) the development of intrinsic resistance to therapy. The existence of cancer stem cells (CSCs) plays a crucial role in both acquired and intrinsic chemoresistance. CSCs are less abundant than terminally differentiated cancer cells and confer chemoresistance through a unique altered metabolism and capability to evade the immune response system. Furthermore, CSCs possess active DNA repair systems, transporters that support multidrug resistance (MDR), advanced detoxification processes, and the ability to self-renew and differentiate into tumor progenitor cells, thereby supporting cancer invasion, metastasis, and recurrence/relapse. Hence, current research is focusing on targeting CSCs to overcome resistance and improve the efficacy of the treatment and management of breast cancer. Studies revealed that metformin (1, 1-dimethylbiguanide), a widely used anti-hyperglycemic agent, sensitizes tumor response to various chemotherapeutic drugs. Metformin selectively targets CSCs and improves the hypoxic microenvironment, suppresses the tumor metastasis and inflammation, as well as regulates the metabolic programming, induces apoptosis, and reverses epithelial-mesenchymal transition and MDR. Here, we discuss cancer (breast cancer) and chemoresistance, the molecular mechanisms of chemoresistance in breast cancers, and metformin as a chemo-sensitizing/re-sensitizing agent, with a particular focus on breast CSCs as a critical contributing factor to acquired and intrinsic chemoresistance. The review outlines the prospects and directions for a better understanding and re-purposing of metformin as an anti-cancer/chemo-sensitizing drug in the treatment of breast cancer. It intends to provide a rationale for the use of metformin as a combinatory therapy in a clinical setting.

15.
EPMA J ; 11(3): 377-398, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32843908

RESUMO

The Warburg effect is characterised by increased glucose uptake and lactate secretion in cancer cells resulting from metabolic transformation in tumour tissue. The corresponding molecular pathways switch from oxidative phosphorylation to aerobic glycolysis, due to changes in glucose degradation mechanisms known as the 'Warburg reprogramming' of cancer cells. Key glycolytic enzymes, glucose transporters and transcription factors involved in the Warburg transformation are frequently dysregulated during carcinogenesis considered as promising diagnostic and prognostic markers as well as treatment targets. Flavonoids are molecules with pleiotropic activities. The metabolism-regulating anticancer effects of flavonoids are broadly demonstrated in preclinical studies. Flavonoids modulate key pathways involved in the Warburg phenotype including but not limited to PKM2, HK2, GLUT1 and HIF-1. The corresponding molecular mechanisms and clinical relevance of 'anti-Warburg' effects of flavonoids are discussed in this review article. The most prominent examples are provided for the potential application of targeted 'anti-Warburg' measures in cancer management. Individualised profiling and patient stratification are presented as powerful tools for implementing targeted 'anti-Warburg' measures in the context of predictive, preventive and personalised medicine.

16.
Cancers (Basel) ; 12(9)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859058

RESUMO

An incidence and mortality of cancer are rapidly growing worldwide, especially due to heterogeneous character of the disease that is associated with irreversible impairment of cellular homeostasis and function. Targeting apoptosis, one of cancer hallmarks, represents a potent cancer treatment strategy. Carotenoids are phytochemicals represented by carotenes, xanthophylls, and derived compounds such as apocarotenoids that demonstrate a broad spectrum of anti-cancer effects involving pro-apoptotic signaling through extrinsic and intrinsic pathways. As demonstrated in preclinical oncology research, the apoptotic modulation is performed at post-genomic levels. Further, carotenoids demonstrate additive/synergistic action in combination with conventional oncostatic agents. In addition, a sensitization of tumor cells to anti-cancer conventional treatment can be achieved by carotenoids. The disadvantage of anti-cancer application of carotenoids is associated with their low solubility and, therefore, poor bioavailability. However, this deficiency can be improved by using nanotechnological approaches, solid dispersions, microemulsions or biofortification that significantly increase the anti-cancer and pro-apoptotic efficacy of carotenoids. Only limited number of studies dealing with apoptotic potential of carotenoids has been published in clinical sphere. Pro-apoptotic effects of carotenoids should be beneficial for individuals at high risk of cancer development. The article considers the utility of carotenoids in the framework of 3P medicine.

17.
Cancers (Basel) ; 12(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806533

RESUMO

Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.

18.
Cancers (Basel) ; 12(6)2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32521759

RESUMO

Metastasis represents a serious complication in the treatment of cancer. Flavonoids are plant secondary metabolites exerting various health beneficiary effects. The effects of flavonoids against cancer are associated not only with early stages of the cancer process, but also with cancer progression and spread into distant sites. Flavonoids showed potent anti-cancer effects against various cancer models in vitro and in vivo, mediated via regulation of key signaling pathways involved in the migration and invasion of cancer cells and metastatic progression, including key regulators of epithelial-mesenchymal transition or regulatory molecules such as MMPs, uPA/uPAR, TGF-ß and other contributors of the complex process of metastatic spread. Moreover, flavonoids modulated also the expression of genes associated with the progression of cancer and improved inflammatory status, a part of the complex process involved in the development of metastasis. Flavonoids also documented clear potential to improve the anti-cancer effectiveness of conventional chemotherapeutic agents. Most importantly, flavonoids represent environmentally-friendly and cost-effective substances; moreover, a wide spectrum of different flavonoids demonstrated safety and minimal side effects during long-termed administration. In addition, the bioavailability of flavonoids can be improved by their conjugation with metal ions or structural modifications by radiation. In conclusion, anti-cancer effects of flavonoids, targeting all phases of carcinogenesis including metastatic progression, should be implemented into clinical cancer research in order to strengthen their potential use in the future targeted prevention and therapy of cancer in high-risk individuals or patients with aggressive cancer disease with metastatic potential.

19.
Biomolecules ; 10(2)2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012744

RESUMO

Several phytochemicals have been identified for their role in modifying miRNA regulating tumor progression. miRNAs modulate the expression of several oncogenes and tumor suppressor genes including the genes that regulate tumor angiogenesis. Hypoxia inducible factor-1 alpha (HIF-1α) signaling is a central axis that activates oncogenic signaling and acts as a metabolic switch in endothelial cell (EC) driven tumor angiogenesis. Tumor angiogenesis driven by metabolic reprogramming of EC is crucial for tumor progression and metastasis in many different cancers, including breast cancers, and has been linked to aberrant miRNA expression profiles. In the current article, we identify different miRNAs that regulate tumor angiogenesis in the context of oncogenic signaling and metabolic reprogramming in ECs and review how selected phytochemicals could modulate miRNA levels to induce an anti-angiogenic action in breast cancer. Studies involving genistein, epigallocatechin gallate (EGCG) and resveratrol demonstrate the regulation of miRNA-21, miRNA-221/222 and miRNA-27, which are prognostic markers in triple negative breast cancers (TNBCs). Modulating the metabolic pathway is a novel strategy for controlling tumor angiogenesis and tumor growth. Cardamonin, curcumin and resveratrol exhibit their anti-angiogenic property by targeting the miRNAs that regulate EC metabolism. Here we suggest that using phytochemicals to target miRNAs, which in turn suppresses tumor angiogenesis, should have the potential to inhibit tumor growth, progression, invasion and metastasis and may be developed into an effective therapeutic strategy for the treatment of many different cancers where tumor angiogenesis plays a significant role in tumor growth and progression.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica , Inibidores da Angiogênese/farmacologia , Neoplasias da Mama/metabolismo , Chalconas/farmacologia , Curcumina/farmacologia , Progressão da Doença , Células Endoteliais/metabolismo , Feminino , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Oxigênio/metabolismo , Compostos Fitoquímicos , Fitoterapia , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacologia , Transdução de Sinais
20.
Biomolecules ; 9(12)2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31835318

RESUMO

Interest has grown in studying the possible use of well-known anti-diabetic drugs as anti-cancer agents individually or in combination with, frequently used, chemotherapeutic agents and/or radiation, owing to the fact that diabetes heightens the risk, incidence, and rapid progression of cancers, including breast cancer, in an individual. In this regard, metformin (1, 1-dimethylbiguanide), well known as 'Glucophage' among diabetics, was reported to be cancer preventive while also being a potent anti-proliferative and anti-cancer agent. While meta-analysis studies reported a lower risk and incidence of breast cancer among diabetic individuals on a metformin treatment regimen, several in vitro, pre-clinical, and clinical studies reported the efficacy of using metformin individually as an anti-cancer/anti-tumor agent or in combination with chemotherapeutic drugs or radiation in the treatment of different forms of breast cancer. However, unanswered questions remain with regards to areas such as cancer treatment specific therapeutic dosing of metformin, specificity to cancer cells at high concentrations, resistance to metformin therapy, efficacy of combinatory therapeutic approaches, post-therapeutic relapse of the disease, and efficacy in cancer prevention in non-diabetic individuals. In the current article, we discuss the biology of metformin and its molecular mechanism of action, the existing cellular, pre-clinical, and clinical studies that have tested the anti-tumor potential of metformin as a potential anti-cancer/anti-tumor agent in breast cancer therapy, and outline the future prospects and directions for a better understanding and re-purposing of metformin as an anti-cancer drug in the treatment of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Galega/química , Metformina/farmacologia , Extratos Vegetais/farmacologia , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Produtos Biológicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Hipoglicemiantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA