RESUMO
Avoiding collisions is a key necessity for any autonomous mobile robot, and obstacle mapping enables them to maneuver in an uncharted area. In this era of the Internet of Things, with the emerging need for a multitude of sensors, adopting self-powered technologies is more practically viable than batteries for powering the same. Herein, with the fabrication of a triboelectric artificial whisker (TAW), a self-powered obstacle detection is demonstrated via tactile perception. The mechanical contact with the obstacle gives rise to an electrical signal from the TAW owing to the embedded triboelectric sensor. In addition, the triboelectric nanogenerator (TENG) based on electrospun polyacrylonitrile (PAN) nanofibers and polydimethylsiloxane film, which facilitates this self-powered artificial sensation, generates an output voltage of 720 V and current density of 5 mA m-2 with 1.7 W m-2 of maximum power delivery from a force of 10 N. The electro-spinning aided enhancement in contact area of the PAN is responsible for the remarkable improvement in the performance of the TENG, 3.4 times enhancement in power density, when compared to the nonsurface-modified ones. In addition, the TENG is able to charge commercial capacitors up to appreciable values and demonstrates powering different electronic gadgets such as calculators and thermometers.
Assuntos
Nanofibras , Animais , Vibrissas , Resinas Acrílicas , Fontes de Energia ElétricaRESUMO
Apart from claiming the lives of more than 3.2 million people, the COVID-19 pandemic is worsening the global plastic pollution every day, mainly with the overflux of single-use polypropylene (PP) face masks. In this scenario, as an innovative solution to mitigate plastic pollution as well as to meet the rising electrical energy demand, we are introducing an all-flexible and facile waste material-based triboelectric nanogenerator (WM-TENG), aiding toward the circular economy. The WM-TENG operating in contact separation mode is fabricated using the PP from a used face mask in combination with recovered Mylar sheets from solid wastes as triboelectric contact layers and a flexible supporting structure. After detailed investigation and trials to study the effect of various disinfection mechanisms of PP materials on the energy output of WM-TENG, UV-C radiation is selected for disinfecting the used masks owing to the retention of electrical energy output. Under a tapping force of 3 N, the WM-TENG having an active area of 6 cm2 delivers an open-circuit voltage of 200 V and a short-circuit current density of 0.29 mA/m2, respectively. The WM-TENG also delivered a maximum power density of 71.16 mW/m2 under 108 Ω load. Additionally, the WM-TENG is demonstrated for powering electronic gadgets such as a calculator, digital thermometer, and LCD clock. This flexible and low-cost nanogenerator without any complex fabrication steps is a sustainable solution for the alarming plastic pollution as well as the rising energy demands.