Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(10): e0223269, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31581220

RESUMO

Pseudomonas putida is one of 13 major groups of Pseudomonas spp. and contains numerous species occupying diverse niches and performing many functions such as plant growth promotion and bioremediation. Here we compared a set of 19 P. putida isolates obtained from sugarcane rhizosphere or bulk soil using a population genomics approach aiming to assess genomic and metabolic differences between populations from these habitats. Phylogenomics placed rhizosphere versus bulk soil strains in separate clades clustering with different type strains of the P. putida group. Multivariate analyses indicated that the rhizosphere and bulk soil isolates form distinct populations. Comparative genomics identified several genetic functions (GO-terms) significantly different between populations, including some exclusively present in the rhizosphere or bulk soil strains, such as D-galactonic acid catabolism and cellulose biosynthesis, respectively. The metabolic profiles of rhizosphere and bulk soil populations analyzed by Biolog Ecoplates also differ significantly, most notably by the higher oxidation of D-galactonic/D-galacturonic acid by the rhizosphere population. Accordingly, D-galactonate catabolism operon (dgo) was present in all rhizosphere isolates and absent in the bulk soil population. This study showed that sugarcane rhizosphere and bulk soil harbor different populations of P. putida and identified genes and functions potentially associated with their soil niches.


Assuntos
Antibiose , Genoma Bacteriano , Genômica , Metabolômica , Pseudomonas putida/fisiologia , Rizosfera , Saccharum/fisiologia , Microbiologia do Solo , Genética Populacional , Genômica/métodos , Metabolômica/métodos , Filogenia , Pseudomonas putida/classificação
2.
Environ Microbiol ; 20(12): 4401-4414, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30033663

RESUMO

Bulk soil and rhizosphere are soil compartments selecting different microbial communities. However, it is unknown whether this selection also can change the genome content of specific bacterial taxa, splitting a population in distinct ecotypes. To answer this question we compared the genome sequences of 53 isolates obtained from sugarcane rhizosphere (28) and bulk soil (25). These isolates were previously classified in the Pseudomonas koreensis subgroup of the P. fluorescens complex. Phylogenomics showed a trend of separation between bulk soil and rhizosphere isolates. Discriminant analysis of principal components (DAPC) identified differences in the accessory genome of rhizosphere and bulk soil sub-populations. We found significant changes in gene frequencies distinguishing rhizosphere from bulk soil ecotypes, for example, enrichment of phosphatases and xylose utilization (xut) genes, respectively. Phenotypic assays and deletion of xutA gene indicated that accumulation of xut genes in the bulk soil sub-population provided a higher growth capacity in a d-xylose medium, supporting the corresponding genomic differences. Despite the clear differences distinguishing the two ecotypes, all 53 isolates were classified in a single 16S rRNA gene OTU. Collectively, our results revealed that the gene pool and ecological behavior of a bacterial population can be different for ecotypes living in neighbouring soil habitats.


Assuntos
Variação Genética , Pseudomonas/genética , Rizosfera , Microbiologia do Solo , Ecótipo , Pool Gênico , Microbiota , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA