Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37999332

RESUMO

Memristors, resistive switching memory devices, play a crucial role in the energy-efficient implementation of artificial intelligence. This study investigates resistive switching behavior in a lateral 2D composite structure composed of bilayer graphene and 2D diamond (diamane) nanostructures formed using electron beam irradiation. The resulting bigraphene/diamane structure exhibits nonlinear charge carrier transport behavior and a significant increase in resistance. It is shown that the resistive switching of the nanostructure is well controlled using bias voltage. The impact of an electrical field on the bonding of diamane-stabilizing functional groups is investigated. By subjecting the lateral bigraphene/diamane/bigraphene nanostructure to a sufficiently strong electric field, the migration of hydrogen ions and/or oxygen-related groups located on one or both sides of the nanostructure can occur. This process leads to the disruption of sp3 carbon bonds, restoring the high conductivity of bigraphene.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36985935

RESUMO

In this work, we studied the oxidation stability of h-BN by investigating different variants of its modification by -OH, -O- and -O-O- groups using an atomistic thermodynamics approach. We showed that up to temperatures of ~1700 K, oxygen is deposited on the surface of hexagonal boron nitride without dissociation, in the form of peroxide. Only at higher temperatures, oxygen tends to be incorporated into the lattice of hexagonal boron nitride, except in the presence of defects Nv, when the embedding occurs at all temperatures. Finally, the electronic and magnetic properties of the oxidized h-BN were studied.

3.
Nanomaterials (Basel) ; 12(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36558260

RESUMO

In the presented paper, we studied bilayer CVD graphene transferred to a langasite substrate and irradiated with a focused electron beam through a layer of polymethyl methacrylate (PMMA). Changes in the Raman spectra and an increase in the electrical resistance of bigraphene after irradiation indicate a local phase transition associated with graphene diamondization. The results are explained in the framework of the theory of a chemically induced phase transition of bilayer graphene to diamane, which can be associated with the release of hydrogen and oxygen atoms from PMMA and langasite due to the "knock-on" effect, respectively, upon irradiation of the structure with an electron beam. Theoretical calculations of the modified structure of bigraphene on langasite and the experimental evaluation of sp3-hybridized carbon fraction indicate the formation of diamane nanoclusters in the bigraphene irradiated regions. This result can be considered as the first realization of local tunable bilayer graphene diamondization.

4.
J Phys Chem Lett ; 13(49): 11383-11390, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455070

RESUMO

Here, we investigate stability of the diamane oxide films and show that various compositions can be realized depending on the precursors, temperature, and pressure. We demonstrate that the commonly used oxygen source in the H2O form requires pressures of GPa order to fabricate the film, which is in full agreement with the experimental data. We show that different types of functional groups can tailor electronic properties of bilayer diamane. Finally, we study electronic property dependence on the film thickness, elucidating its connection with surface states.

5.
Materials (Basel) ; 15(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36431653

RESUMO

Methylene blue (MB) is widely used as a test material in photodynamic therapy and photocatalysis. These applications require an accurate determination of the MB concentration as well as the factors affecting the temporal evolution of the MB concentration. Optical absorbance is the most common method used to estimate MB concentration. This paper presents a detailed study of the dependence of the optical absorbance of aqueous methylene blue (MB) solutions in a concentration range of 0.5 to 10 mg·L-1. The nonlinear behavior of optical absorbance as a function of MB concentration is described for the first time. A sharp change in optical absorption is observed in the range of MB concentrations from 3.33 to 4.00 mg·L-1. Based on the analysis of the absorption spectra, it is concluded that this is due to the formation of MB dimers and trimers in the specific concentration range. For the first time, a strong, thermally induced discoloration effect of the MB solution under the influence of visible and sunlight was revealed: the simultaneous illumination and heating of MB solutions from 20 to 80 °C leads to a twofold decrease in the MB concentration in the solution. Exposure to sunlight for 120 min at a temperature of 80 °C led to the discoloration of the MB solution by more than 80%. The thermally induced discoloration of MB solutions should be considered in photocatalytic experiments when tested solutions are not thermally stabilized and heated due to irradiation. We discuss whether MB is a suitable test material for photocatalytic experiments and consider this using the example of a new photocatalytic material-boron oxynitride (BNOx) nanoparticles-with 4.2 and 6.5 at.% of oxygen. It is shown that discoloration is a complex process and includes the following mechanisms: thermally induced MB photodegradation, MB absorption on BNOx NPs, self-sensitizing MB photooxidation, and photocatalytic MB degradation. Careful consideration of all these processes makes it possible to determine the photocatalytic contribution to the discoloration process when using MB as a test material. The photocatalytic activity of BNOx NPs containing 4.2 and 6.5 at.% of oxygen, estimated at ~440 µmol·g-1·h-1. The obtained results are discussed based on the results of DFT calculations considering the effect of MB sorption on its self-sensitizing photooxidation activity. A DFT analysis of the MB sorption capacity with BNOx NPs shows that surface oxygen defects prevent the sorption of MB molecules due to their planar orientation over the BNOx surface. To enhance the sorption capacity, surface oxygen defects should be eliminated.

6.
Nanomaterials (Basel) ; 12(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36432269

RESUMO

The presented work is devoted to the study of the formation of the thinnest diamond film (diamane). We investigate the initial stages of diamond nucleation in imperfect bilayer graphene exposed by the deposition of H atoms (chemically induced phase transition). We show that defects serve as nucleation centers, their hydrogenation is energy favorable and depends on the defect type. Hydrogenation of vacancies facilitates the binding of graphene layers, but the impact wanes already at the second coordination sphere. Defects influence of 5|7 is lower but promotes diamondization. The grain boundary role is similar but can lead to the final formation of a diamond film consisting of chemically connected grains with different surfaces. Interestingly, even hexagonal and cubic two-dimensional diamonds can coexist together in the same film, which suggests the possibility of obtaining a new two-dimensional polycrystal unexplored before.

7.
Nanomaterials (Basel) ; 11(12)2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34947581

RESUMO

Molybdenum sulfide is a very promising catalyst for the photodegradation of organic pollutants in water. Its photocatalytic activity arises from unsaturated sulfur bonds, and it increases with the introduction of structural defects and/or oxygen substitutions. Amorphous molybdenum sulfide (a-MoSxOy) with oxygen substitutions has many active sites, which create favorable conditions for enhanced catalytic activity. Here we present a new approach to the synthesis of a-MoSxOy and demonstrate its high activity in the photodegradation of the dye methylene blue (MB). The MoSxOy was deposited on hexagonal boron oxynitride (h-BNO) nanoflakes by reacting h-BNO, MoCl5, and H2S in dimethylformamide (DMF) at 250 °C. Both X-ray diffraction analysis and high-resolution TEM show the absence of crystalline order in a-MoSxOy. Based on the results of Raman and X-ray photoelectron spectroscopy, as well as analysis by the density functional theory (DFT) method, a chain structure of a-MoSxOy was proposed, consisting of MoS3 clusters with partial substitution of sulfur by oxygen. When a third of the sulfur atoms are replaced with oxygen, the band gap of a-MoSxOy is approximately 1.36 eV, and the valence and conduction bands are 0.74 eV and -0.62 eV, respectively (relative to a standard hydrogen electrode), which satisfies the conditions of photoinduced splitting of water. When illuminated with a mercury lamp, a-MoSxOy/h-BNxOy nanohybrids have a specific mass activity in MB photodegradation of approximately 5.51 mmol g-1 h-1, which is at least four times higher than so far reported values for nonmetal catalysts. The photocatalyst has been shown to be very stable and can be reused.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA