Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 14684, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604989

RESUMO

This study investigated the potential of vitamin K1 as a novel lens aldose reductase inhibitor in a streptozotocin-induced diabetic cataract model. A single, intraperitoneal injection of streptozotocin (STZ) (35 mg/kg) resulted in hyperglycemia, activation of lens aldose reductase 2 (ALR2) and accumulation of sorbitol in eye lens which could have contributed to diabetic cataract formation. However, when diabetic rats were treated with vitamin K1 (5 mg/kg, sc, twice a week) it resulted in lowering of blood glucose and inhibition of lens aldose reductase activity because of which there was a corresponding decrease in lens sorbitol accumulation. These results suggest that vitamin K1 is a potent inhibitor of lens aldose reductase enzyme and we made an attempt to understand the nature of this inhibition using crude lens homogenate as well as recombinant human aldose reductase enzyme. Our results from protein docking and spectrofluorimetric analyses clearly show that vitamin K1 is a potent inhibitor of ALR2 and this inhibition is primarily mediated by the blockage of DL-glyceraldehyde binding to ALR2. At the same time docking also suggests that vitamin K1 overlaps at the NADPH binding site of ALR2, which probably shows that vitamin K1 could possibly bind both these sites in the enzyme. Another deduction that we can derive from the experiments performed with pure protein is that ALR2 has three levels of affinity, first for NADPH, second for vitamin K1 and third for the substrate DL-glyceraldehyde. This was evident based on the dose-dependency experiments performed with both NADPH and DL-glyceraldehyde. Overall, our study shows the potential of vitamin K1 as an ALR2 inhibitor which primarily blocks enzyme activity by inhibiting substrate interaction of the enzyme. Further structural studies are needed to fully comprehend the exact nature of binding and inhibition of ALR2 by vitamin K1 that could open up possibilities of its therapeutic application.


Assuntos
Aldeído Redutase/genética , Catarata/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Diabetes Mellitus Experimental/tratamento farmacológico , Vitamina K 1/farmacologia , Animais , Glicemia/efeitos dos fármacos , Catarata/genética , Catarata/patologia , Complicações do Diabetes/genética , Complicações do Diabetes/patologia , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/genética , Hiperglicemia/patologia , Cristalino/efeitos dos fármacos , Cristalino/patologia , Oxirredução/efeitos dos fármacos , Ratos , Vitamina K 1/metabolismo
2.
Biochim Biophys Acta Gen Subj ; 1863(8): 1270-1282, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125678

RESUMO

INTRODUCTION: AMP-activated protein kinase (AMPK) is a drug target for treatment of metabolic and cardiovascular complications. Extracts of Gentianaceace plants exhibit anti-diabetic and anti-atherosclerotic effects, however, whether their phyto-constitutents activate AMPK remains to be determined. METHODS: Molecular docking of Gentiana lutea constituents was performed with crystal structure of human α2ß1γ1 trimeric AMPK (PDB ID: 4CFE). Binding of Amarogentin (AG) to α2 subunit was confirmed through isothermal titration calorimetry (ITC) and in vitro kinase assays were performed. L6 myotube, HUH7 and endothelial cell cultures were employed to validate in silico and in vitro observations. Lipid lowering and anti-atherosclerotic effects were confirmed in streptozotocin induced diabetic mice via biochemical measurements and through heamatoxylin and eosin, Masson's trichrome and Oil Red O staining. RESULTS: AG interacts with the α2 subunit of AMPK and activates the trimeric kinase with an EC50 value of 277 pM. In cell culture experiments, AG induced phosphorylation of AMPK as well as its downstream targets, acetyl-coA-carboxylase (ACC) and endothelial nitric oxide synthase (eNOS). Additionally, it enhanced glucose uptake in myotubes and blocked TNF-α induced endothelial inflammation. Oral supplementation of AG significantly attenuated diabetes-mediated neointimal thickening, and collagen and lipid deposition in the aorta. It also improved circulating levels of lipids and liver function in diabetic mice. CONCLUSION: In conclusion, AG exerts beneficial vasculo-metabolic effects by activating AMPK. GENERAL SIGNIFICANCE: Amarogentin, a naturally occurring secoiridoid glycoside, is a promising lead for design and synthesis of novel drugs for treatment and management of dyslipidemia and cardiovascular diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Endotélio Vascular/efeitos dos fármacos , Iridoides/farmacologia , Animais , Aterosclerose/prevenção & controle , Calorimetria , Diabetes Mellitus Experimental/enzimologia , Diabetes Mellitus Experimental/metabolismo , Endotélio Vascular/metabolismo , Ativação Enzimática , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Lipídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia
3.
Nutrition ; 31(1): 214-22, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25466668

RESUMO

OBJECTIVE: The aim of this study was to understand the mechanism of action of vitamin K1 against streptozotocin (STZ)-induced diabetes. METHODS: Male Wistar rats were administered 35 mg/kg STZ and after 3 d were treated with vitamin K1 (5 mg/kg, twice a week) for 3 months. Blood glucose was monitored twice a month. At the end of the study, animals were sacrificed and pancreas dissected out and analyzed for free radicals, antioxidants, metabolic enzymes related to glucose, membrane ATPases, histopathological evaluation, and expression of nuclear factor (NF)-κB and inducible nitric oxide synthase (iNOS). Glycated hemoglobin, plasma insulin, and islet area were determined at the end of the study. RESULTS: Treatment of STZ-induced type 1 diabetic rats with vitamin K1 reduced oxidative stress, enhanced antioxidants, and inhibited aldose reductase in pancreas. Vitamin K1 administration rescued endocrine pancreas from STZ-induced cell death, resulting in enhanced insulin secretion and normal blood glucose and glycosylated hemoglobin levels. Histologic analyses also showed the antidiabetic potential of vitamin K1. Measure of pancreatic islet area showed an increase in the islet area upon vitamin K1 treatment when compared with the STZ-administered group, suggesting the possibility of regeneration. To understand the mechanism involved in vitamin K1 mediated changes, we performed immunohistochemical analyses for NF-κB and iNOS enzyme. Vitamin K1 was shown to suppress NF-κB activation and iNOS expression in the islets upon administration of STZ. CONCLUSION: This work shows, to our knowledge for the first time, the mechanism of action of vitamin K1 against type 1 diabetes and the possible therapeutic use of this vitamin in stimulating islet cell proliferation/regeneration.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Vitamina K 1/farmacologia , Animais , Antioxidantes/farmacologia , Glicemia/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Tipo 1/induzido quimicamente , Diabetes Mellitus Tipo 1/tratamento farmacológico , Relação Dose-Resposta a Droga , Hemoglobinas/metabolismo , Hipoglicemiantes/farmacologia , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Ratos , Ratos Wistar , Estreptozocina/efeitos adversos
4.
Aquat Toxicol ; 158: 149-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25438120

RESUMO

Chemical transformations of metal nanoparticles can be an important way to mitigate nanoparticle toxicity. Sulfidation of silver nanoparticle (AgNPs) is a natural process shown to occur in environment. Very few studies, employing microbes and embryonic stages of zebrafish, have shown reduction in AgNPs toxicity as a direct result of sulfidation. However the feasibility of reducing nanoparticle toxicity by sulfidation of AgNPs has never been studied in adult vertebrates. In this study, we have used adult zebrafish as a model to study the efficacy of sulfidation of AgNPs in reducing nanoparticle toxicity by employing a battery of biomarkers in liver and brain. While AgNPs enhanced liver oxidative stress, altered detoxification enzymes and affected brain acetylcholinesterase activity, sulfidation of AgNPs resulted in significant alleviation of changes in these parameters. Histopathological analyses of liver and sulphydryl levels also support the significance of sulfidated AgNPs in controlling the toxicity of AgNPs. Our study provides the first biochemical data on the importance of sulfidation of AgNPs in reducing biological toxicity in adult vertebrates.


Assuntos
Fígado/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata/química , Prata/toxicidade , Sulfetos/química , Peixe-Zebra/fisiologia , Animais , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA