Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37998916

RESUMO

Onychomycosis, or fungal nail infection, causes not only pain and discomfort but can also have psychological and social consequences for the patient. Treatment of onychomycosis is complicated by the location of the infection under the nail plate, meaning that antifungal molecules must either penetrate the nail or be applied systemically. Currently, available treatments are limited by their poor nail penetration for topical products or their potential toxicity for systemic products. Plant defensins with potent antifungal activity have the potential to be safe and effective treatments for fungal infections in humans. The cystine-stabilized structure of plant defensins makes them stable to the extremes of pH and temperature as well as digestion by proteases. Here, we describe a novel plant defensin, Ppdef1, as a peptide for the treatment of fungal nail infections. Ppdef1 has potent, fungicidal activity against a range of human fungal pathogens, including Candida spp., Cryptococcus spp., dermatophytes, and non-dermatophytic moulds. In particular, Ppdef1 has excellent activity against dermatophytes that infect skin and nails, including the major etiological agent of onychomycosis Trichophyton rubrum. Ppdef1 also penetrates human nails rapidly and efficiently, making it an excellent candidate for a novel topical treatment of onychomycosis.

2.
J Fungi (Basel) ; 6(3)2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847065

RESUMO

Plant defensins are best known for their antifungal activity and contribution to the plant immune system. The defining feature of plant defensins is their three-dimensional structure known as the cysteine stabilized alpha-beta motif. This protein fold is remarkably tolerant to sequence variation with only the eight cysteines that contribute to the stabilizing disulfide bonds absolutely conserved across the family. Mature defensins are typically 46-50 amino acids in length and are enriched in lysine and/or arginine residues. Examination of a database of approximately 1200 defensin sequences revealed a subset of defensin sequences that were extended in length and were enriched in histidine residues leading to their classification as histidine-rich defensins (HRDs). Using these initial HRD sequences as a query, a search of the available sequence databases identified over 750 HRDs in solanaceous plants and 20 in brassicas. Histidine residues are known to contribute to metal binding functions in proteins leading to the hypothesis that HRDs would have metal binding properties. A selection of the HRD sequences were recombinantly expressed and purified and their antifungal and metal binding activity was characterized. Of the four HRDs that were successfully expressed all displayed some level of metal binding and two of four had antifungal activity. Structural characterization of the other HRDs identified a novel pattern of disulfide linkages in one of the HRDs that is predicted to also occur in HRDs with similar cysteine spacing. Metal binding by HRDs represents a specialization of the plant defensin fold outside of antifungal activity.

3.
Front Microbiol ; 10: 795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31031739

RESUMO

Pathogenic microbes are developing resistance to established antibiotics, making the development of novel antimicrobial molecules paramount. One major resource for discovery of antimicrobials is the arsenal of innate immunity molecules that are part of the first line of pathogen defense in many organisms. Gene encoded cationic antimicrobial peptides are a major constituent of innate immune arsenals. Many of these peptides exhibit potent antimicrobial activity in vitro. However, a major hurdle that has impeded their development for use in the clinic is the loss of activity at physiological salt concentrations, attributed to weakening of the electrostatic interactions between the cationic peptide and anionic surfaces of the microbial cells in the presence of salt. Using plant defensins we have investigated the relationship between the charge of an antimicrobial peptide and its activity in media with elevated salt concentrations. Plant defensins are a large class of antifungal peptides that have remarkable stability at extremes of pH and temperature as well as resistance to protease digestion. A search of a database of over 1200 plant defensins identified ZmD32, a defensin from Zea mays, with a predicted charge of +10.1 at pH 7, the highest of any defensin in the database. Recombinant ZmD32 retained activity against a range of fungal species in media containing elevated concentrations of salt. In addition, ZmD32 was active against Candida albicans biofilms as well as both Gram negative and Gram-positive bacteria. This broad spectrum antimicrobial activity, combined with a low toxicity on human cells make ZmD32 an attractive lead for development of future antimicrobial molecules.

4.
Antimicrob Agents Chemother ; 58(5): 2688-98, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24566173

RESUMO

Cationic antifungal peptides (AFPs) act through a variety of mechanisms but share the common feature of interacting with the fungal cell surface. NaD1, a defensin from Nicotiana alata, has potent antifungal activity against a variety of fungi of both hyphal and yeast morphologies. The mechanism of action of NaD1 occurs via three steps: binding to the fungal cell surface, permeabilization of the plasma membrane, and internalization and interaction with intracellular targets to induce fungal cell death. The targets at each of these three stages have yet to be defined. In this study, the screening of a Saccharomyces cerevisiae deletion collection led to the identification of Agp2p as a regulator of the potency of NaD1. Agp2p is a plasma membrane protein that regulates the transport of polyamines and other molecules, many of which carry a positive charge. Cells lacking the agp2 gene were more resistant to NaD1, and this resistance was accompanied by a decreased uptake of defensin. Agp2p senses and regulates the uptake of the polyamine spermidine, and competitive inhibition of the antifungal activity of NaD1 by spermidine was observed in both S. cerevisiae and the plant pathogen Fusarium oxysporum. The resistance of agp2Δ cells to other cationic antifungal peptides and decreased binding of the cationic protein cytochrome c to agp2Δ cells compared to that of wild-type cells have led to a proposed mechanism of resistance whereby the deletion of agp2 leads to an increase in positively charged molecules at the cell surface that repels cationic antifungal peptides.


Assuntos
Antifúngicos/metabolismo , Membrana Celular/metabolismo , NADH Desidrogenase/metabolismo , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Poliaminas/metabolismo , Antifúngicos/farmacologia , Citometria de Fluxo , Fusarium/efeitos dos fármacos , Fusarium/metabolismo , Peptídeos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA