Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Methods Clin Dev ; 29: 145-159, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37025950

RESUMO

DNA transposon-based gene delivery vectors represent a promising new branch of randomly integrating vector development for gene therapy. For the side-by-side evaluation of the piggyBac and Sleeping Beauty systems-the only DNA transposons currently employed in clinical trials-during therapeutic intervention, we treated the mouse model of tyrosinemia type I with liver-targeted gene delivery using both transposon vectors. For genome-wide mapping of transposon insertion sites we developed a new next-generation sequencing procedure called streptavidin-based enrichment sequencing, which allowed us to identify approximately one million integration sites for both systems. We revealed that a high proportion of piggyBac integrations are clustered in hot regions and found that they are frequently recurring at the same genomic positions among treated animals, indicating that the genome-wide distribution of Sleeping Beauty-generated integrations is closer to random. We also revealed that the piggyBac transposase protein exhibits prolonged activity, which predicts the risk of oncogenesis by generating chromosomal double-strand breaks. Safety concerns associated with prolonged transpositional activity draw attention to the importance of squeezing the active state of the transposase enzymes into a narrower time window.

2.
Nat Microbiol ; 8(3): 410-423, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759752

RESUMO

Functional metagenomics is a powerful experimental tool to identify antibiotic resistance genes (ARGs) in the environment, but the range of suitable host bacterial species is limited. This limitation affects both the scope of the identified ARGs and the interpretation of their clinical relevance. Here we present a functional metagenomics pipeline called Reprogrammed Bacteriophage Particle Assisted Multi-species Functional Metagenomics (DEEPMINE). This approach combines and improves the use of T7 bacteriophage with exchanged tail fibres and targeted mutagenesis to expand phage host-specificity and efficiency for functional metagenomics. These modified phage particles were used to introduce large metagenomic plasmid libraries into clinically relevant bacterial pathogens. By screening for ARGs in soil and gut microbiomes and clinical genomes against 13 antibiotics, we demonstrate that this approach substantially expands the list of identified ARGs. Many ARGs have species-specific effects on resistance; they provide a high level of resistance in one bacterial species but yield very limited resistance in a related species. Finally, we identified mobile ARGs against antibiotics that are currently under clinical development or have recently been approved. Overall, DEEPMINE expands the functional metagenomics toolbox for studying microbial communities.


Assuntos
Bacteriófagos , Genes Bacterianos , Antibacterianos/farmacologia , Metagenômica , Bacteriófagos/genética , Bactérias/genética
3.
Virus Evol ; 8(2): veac069, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35996591

RESUMO

Retrospective evaluation of past waves of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic is key for designing optimal interventions against future waves and novel pandemics. Here, we report on analysing genome sequences of SARS-CoV-2 from the first two waves of the epidemic in 2020 in Hungary, mirroring a suppression and a mitigation strategy, respectively. Our analysis reveals that the two waves markedly differed in viral diversity and transmission patterns. Specifically, unlike in several European areas or in the USA, we have found no evidence for early introduction and cryptic transmission of the virus in the first wave of the pandemic in Hungary. Despite the introduction of multiple viral lineages, extensive community spread was prevented by a timely national lockdown in March 2020. In sharp contrast, the majority of the cases in the much larger second wave can be linked to a single transmission lineage of the pan-European B.1.160 variant. This lineage was introduced unexpectedly early, followed by a 2-month-long cryptic transmission before a soar of detected cases in September 2020. Epidemic analysis has revealed that the dominance of this lineage in the second wave was not associated with an intrinsic transmission advantage. This finding is further supported by the rapid replacement of B.1.160 by the alpha variant (B.1.1.7) that launched the third wave of the epidemic in February 2021. Overall, these results illustrate how the founder effect in combination with the cryptic transmission, instead of repeated international introductions or higher transmissibility, can govern viral diversity.

4.
PLoS Biol ; 18(10): e3000819, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33017402

RESUMO

Antibiotics that inhibit multiple bacterial targets offer a promising therapeutic strategy against resistance evolution, but developing such antibiotics is challenging. Here we demonstrate that a rational design of balanced multitargeting antibiotics is feasible by using a medicinal chemistry workflow. The resultant lead compounds, ULD1 and ULD2, belonging to a novel chemical class, almost equipotently inhibit bacterial DNA gyrase and topoisomerase IV complexes and interact with multiple evolutionary conserved amino acids in the ATP-binding pockets of their target proteins. ULD1 and ULD2 are excellently potent against a broad range of gram-positive bacteria. Notably, the efficacy of these compounds was tested against a broad panel of multidrug-resistant Staphylococcus aureus clinical strains. Antibiotics with clinical relevance against staphylococcal infections fail to inhibit a significant fraction of these isolates, whereas both ULD1 and ULD2 inhibit all of them (minimum inhibitory concentration [MIC] ≤1 µg/mL). Resistance mutations against these compounds are rare, have limited impact on compound susceptibility, and substantially reduce bacterial growth. Based on their efficacy and lack of toxicity demonstrated in murine infection models, these compounds could translate into new therapies against multidrug-resistant bacterial infections.


Assuntos
Antibacterianos/farmacologia , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antibacterianos/uso terapêutico , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Evolução Molecular Direcionada , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Testes de Sensibilidade Microbiana , Mutação/genética , Pele/efeitos dos fármacos , Pele/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Testes de Toxicidade
5.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33126430

RESUMO

Gut microbial composition alters in some special situations, such as in ulcerative colits (UC) after total proctocolectomy and ileal pouch-anal anastomosis (IPAA) surgery. The aim of our study was to determine the composition of the intestinal microbiome in UC patients after IPAA surgery, compared with UC patients, familial adenomatous polyposis (FAP) patients after IPAA surgery and healthy controls. Clinical data of patients, blood and faecal samples were collected. Faecal microbiota structure was determined by sequencing the V4 hypervariable region of the 16S rRNA gene. Overall, 56 patients were enrolled. Compared to the Healthy group, both the Pouch active and UC active groups had higher Enterobacteriaceae, Enterococcaceae and Pasteurellaceae abundance. The Pouch and UC groups showed distinct separation based on their alpha and beta bacterial diversities. The UC group had higher Prevotellaceae, Rikenellaceae, Ruminococcaceae abundance compared to the Pouch active group. Pouch and FAP participants showed similar bacterial community composition. There was no significant difference in the bacterial abundance between the active and inactive subgroups of the Pouch or UC groups. Gut microbiome and anatomical status together construct a functional unit that has influence on diversity, in addition to intestinal inflammation that is a part of the pathomechanism in UC.

6.
Artigo em Inglês | MEDLINE | ID: mdl-31235632

RESUMO

Multitargeting antibiotics, i.e., single compounds capable of inhibiting two or more bacterial targets, are generally considered to be a promising therapeutic strategy against resistance evolution. The rationale for this theory is that multitargeting antibiotics demand the simultaneous acquisition of multiple mutations at their respective target genes to achieve significant resistance. The theory presumes that individual mutations provide little or no benefit to the bacterial host. Here, we propose that such individual stepping-stone mutations can be prevalent in clinical bacterial isolates, as they provide significant resistance to other antimicrobial agents. To test this possibility, we focused on gepotidacin, an antibiotic candidate that selectively inhibits both bacterial DNA gyrase and topoisomerase IV. In a susceptible organism, Klebsiella pneumoniae, a combination of two specific mutations in these target proteins provide an >2,000-fold reduction in susceptibility, while individually, none of these mutations affect resistance significantly. Alarmingly, strains with decreased susceptibility against gepotidacin are found to be as virulent as the wild-type Klebsiella pneumoniae strain in a murine model. Moreover, numerous pathogenic isolates carry mutations which could promote the evolution of clinically significant reduction of susceptibility against gepotidacin in the future. As might be expected, prolonged exposure to ciprofloxacin, a clinically widely employed gyrase inhibitor, coselected for reduced susceptibility against gepotidacin. We conclude that extensive antibiotic usage could select for mutations that serve as stepping-stones toward resistance against antimicrobial compounds still under development. Our research indicates that even balanced multitargeting antibiotics are prone to resistance evolution.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Klebsiella pneumoniae/efeitos dos fármacos , Mutação , Acenaftenos/química , Acenaftenos/farmacologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciprofloxacina/farmacologia , DNA Girase/química , DNA Girase/genética , DNA Girase/metabolismo , Evolução Molecular Direcionada , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Aptidão Genética , Compostos Heterocíclicos com 3 Anéis/química , Compostos Heterocíclicos com 3 Anéis/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Camundongos , Testes de Sensibilidade Microbiana , Simulação de Dinâmica Molecular , Virulência/genética
7.
Nat Microbiol ; 4(3): 447-458, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30559406

RESUMO

The human gut microbiota has adapted to the presence of antimicrobial peptides (AMPs), which are ancient components of immune defence. Despite its medical importance, it has remained unclear whether AMP resistance genes in the gut microbiome are available for genetic exchange between bacterial species. Here, we show that AMP resistance and antibiotic resistance genes differ in their mobilization patterns and functional compatibilities with new bacterial hosts. First, whereas AMP resistance genes are widespread in the gut microbiome, their rate of horizontal transfer is lower than that of antibiotic resistance genes. Second, gut microbiota culturing and functional metagenomics have revealed that AMP resistance genes originating from phylogenetically distant bacteria have only a limited potential to confer resistance in Escherichia coli, an intrinsically susceptible species. Taken together, functional compatibility with the new bacterial host emerges as a key factor limiting the genetic exchange of AMP resistance genes. Finally, our results suggest that AMPs induce highly specific changes in the composition of the human microbiota, with implications for disease risks.


Assuntos
Peptídeos Catiônicos Antimicrobianos/genética , Bactérias/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Genes Bacterianos , Filogenia , Escherichia coli/genética , Genoma Bacteriano , Humanos , Metagenômica
8.
Proc Natl Acad Sci U S A ; 115(25): E5726-E5735, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29871954

RESUMO

Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Loci Gênicos/genética , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Evolução Molecular , Genômica/métodos , Mutação/genética , Taxa de Mutação , Trimetoprima/farmacologia
9.
Stand Genomic Sci ; 12: 75, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255570

RESUMO

Strain CCMM B554, also known as FSM-MA, is a soil dwelling and nodule forming, nitrogen-fixing bacterium isolated from the nodules of the legume Medicago arborea L. in the Maamora Forest, Morocco. The strain forms effective nitrogen fixing nodules on species of the Medicago, Melilotus and Trigonella genera and is exceptional because it is a highly effective symbiotic partner of the two most widely used accessions, A17 and R108, of the model legume Medicago truncatula Gaertn. Based on 16S rRNA gene sequence, multilocus sequence and average nucleotide identity analyses, FSM-MA is identified as a new Ensifer meliloti strain. The genome is 6,70 Mbp and is comprised of the chromosome (3,64 Mbp) harboring 3574 predicted genes and two megaplasmids, pSymA (1,42 Mbp) and pSymB (1,64 Mbp) with respectively 1481 and 1595 predicted genes. The average GC content of the genome is 61.93%. The FSM-MA genome structure is highly similar and co-linear to other E. meliloti strains in the chromosome and the pSymB megaplasmid while, in contrast, it shows high variability in the pSymA plasmid. The large number of strain-specific sequences in pSymA as well as strain-specific genes on pSymB involved in the biosynthesis of the lipopolysaccharide and capsular polysaccharide surface polysaccharides may encode novel symbiotic functions explaining the high symbiotic performance of FSM-MA.

10.
Artigo em Inglês | MEDLINE | ID: mdl-28611956

RESUMO

Shigella strains are important agents of bacillary dysentery, and in recent years Shigella sonnei has emerged as the leading cause of shigellosis in industrialized and rapidly developing countries. More recently, several S. sonnei and Shigella flexneri strains producing Shiga toxin (Stx) have been reported from sporadic cases and from an outbreak in America. In the present study we aimed to shed light on the evolution of a recently identified Shiga toxin producing S. sonnei (STSS) isolated in Europe. Here we report the first completely assembled whole genome sequence of a multidrug resistant (MDR) Stx-producing S. sonnei (STSS) clinical strain and reveal its phylogenetic relations. STSS 75/02 proved to be resistant to ampicillin, streptomycin, tetracycline, chloramphenicol, thrimetoprim, and sulfomethoxazol. The genome of STSS 75/02 contains a 4,891,717 nt chromosome and seven plasmids including the 214 kb invasion plasmid (pInv) harboring type III secretion system genes and associated effectors. The chromosome harbors 23 prophage regions including the Stx1 converting prophage. The genome carries all virulence determinants necessary for an enteroinvasive lifestyle, as well as the Stx1 encoding gene cluster within an earlier described inducible converting prophage. In silico SNP genotyping of the assembled genome as well as 438 complete or draft S. sonnei genomes downloaded from NCBI GenBank revealed that S. sonnei 75/02 belongs to the more recently diverged global MDR lineage (IIIc). Targeted screening of 1131 next-generation sequencing projects taken from NCBI Short Read Archive of confirms that only a few S. sonnei isolates are Stx positive. Our results suggest that the acquisition of Stx phages could have occurred in different environments as independent events and that multiple horizontal transfers are responsible for the appearance of Stx phages in S. sonnei strains.


Assuntos
Genoma Bacteriano/genética , Filogenia , Toxina Shiga/classificação , Toxina Shiga/genética , Shigella sonnei/genética , Antibacterianos/farmacologia , Bacteriófagos/genética , Farmacorresistência Bacteriana Múltipla/genética , Disenteria Bacilar/microbiologia , Europa (Continente) , Genes Bacterianos/genética , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Família Multigênica , Plasmídeos/genética , Prófagos/genética , Homologia de Sequência , Sorotipagem , Toxina Shiga I/genética , Shigella flexneri/genética , Shigella sonnei/efeitos dos fármacos , Shigella sonnei/isolamento & purificação , Shigella sonnei/virologia , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA