Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 15(10): 5706-5722, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39421768

RESUMO

Early detection of (pre)malignant esophageal lesions is critical to improve esophageal cancer morbidity and mortality rates. In patients with advanced esophageal adenocarcinoma (EAC) who undergo neoadjuvant chemoradiation therapy, the efficacy of therapy could be optimized and unnecessary surgery prevented by the reliable assessment of residual tumors after therapy. Optical coherence tomography (OCT) provides structural images at a (sub)-cellular level and has the potential to visualize morphological changes in tissue. However, OCT lacks molecular imaging contrast, a feature that enables the study of biological processes at a cellular level and can enhance esophageal cancer diagnostic accuracy. We combined OCT with near-infrared fluorescence molecular imaging using fluorescently labelled antibodies (immuno-OCT). The main goal of this proof of principle study is to investigate the feasibility of immuno-OCT for esophageal cancer imaging. We aim to assess whether the sensitivity of our immuno-OCT device is sufficient to detect the tracer uptake using an imaging dose (∼100 times smaller than a dose with therapeutic effects) of a targeted fluorescent agent. The feasibility of immuno-OCT was demonstrated ex-vivo on dysplastic lesions resected from Barrett's patients and on esophageal specimens resected from patients with advanced EAC, who were respectively topically and intravenously administrated with the tracer bevacizumab-800CW. The detection sensitivity of our system (0.3 nM) is sufficient to detect increased tracer uptake with micrometer resolution using an imaging dose of labelled antibodies. Moreover, the absence of layered structures that are typical of normal esophageal tissue observed in OCT images of dysplastic/malignant esophageal lesions may further aid their detection. Based on our preliminary results, immuno-OCT could improve the detection of dysplastic esophageal lesions.

2.
BMJ Open Respir Res ; 10(1)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553184

RESUMO

INTRODUCTION: Endobronchial polarisation sensitive optical coherence tomography (EB-PS-OCT) is a bronchoscopic imaging technique exceeding resolution of high-resolution CT (HRCT) by 50-fold. It detects collagen birefringence, enabling identification and quantification of fibrosis. STUDY AIM: To assess pulmonary fibrosis in interstitial lung diseases (ILD) patients with in vivo EB-PS-OCT using histology as reference standard. PRIMARY OBJECTIVE: Visualisation and quantification of pulmonary fibrosis by EB-PS-OCT. SECONDARY OBJECTIVES: Comparison of EB-PS-OCT and HRCT detected fibrosis with histology, identification of ILD histological features in EB-PS-OCT images and comparison of ex vivo PS-OCT results with histology. METHODS: Observational prospective exploratory study. Patients with ILD scheduled for transbronchial cryobiopsy or surgical lung biopsy underwent in vivo EB-PS-OCT imaging prior to tissue acquisition. Asthma patients were included as non-fibrotic controls. Per imaged lung segment, fibrosis was automatically quantified assessing the birefringent area in EB-PS-OCT images. Fibrotic extent in corresponding HRCT areas and biopsies were compared with EB-PS-OCT detected fibrosis. Microscopic ILD features were identified on EB-PS-OCT images and matched with biopsies from the same segment. RESULTS: 19 patients were included (16 ILD; 3 asthma). In 49 in vivo imaged airway segments the parenchymal birefringent area was successfully quantified and ranged from 2.54% (no to minimal fibrosis) to 21.01% (extensive fibrosis). Increased EB-PS-OCT detected birefringent area corresponded to increased histologically confirmed fibrosis, with better predictive value than HRCT. Microscopic ILD features were identified on both in vivo and ex vivo PS-OCT images. CONCLUSIONS: EB-PS-OCT enables pulmonary fibrosis quantification, thereby has potential to serve as an add-on bronchoscopic imaging technique to diagnose and detect (early) fibrosis in ILD.


Assuntos
Asma , Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Estudos Prospectivos , Doenças Pulmonares Intersticiais/diagnóstico por imagem , Fibrose
4.
Biomed Opt Express ; 12(11): 6796-6813, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858681

RESUMO

A non-invasive diagnostic tool to assess remodeling of the lung airways caused by disease is currently missing in the clinic. Measuring key features such as airway smooth muscle (ASM) thickness would increase the ability to improve diagnosis and enable treatment evaluation. In this research, polarization-sensitive optical coherence tomography (PS-OCT) has been used to image a total of 24 airways from two healthy lungs and four end-stage diseased lungs ex vivo, including fibrotic sarcoidosis, chronic obstructive pulmonary disease (COPD), fibrotic hypersensitivity pneumonitis, and cystic fibrosis. In the diseased lungs, except COPD, the amount of measured airway smooth muscle was increased. In COPD, airway smooth muscle could not be distinguished from surrounding collagen. COPD lungs showed increased alveolar size. 3D pullbacks in the same lumen provided reproducible assessment of airway smooth muscle (ASM). Image features such as thickened ASM and size/presence of alveoli were recognized in histology. The results of this study are preliminary and must be confirmed with further ex vivo and in vivo studies. PS-OCT is applicable for in vivo assessment of peribronchial and peribronchiolar lung structures and may become a valuable tool for diagnosis in pulmonology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA