Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36903788

RESUMO

In this work, the formation, structural properties, and energy spectrum of novel self-assembled GaSb/AlP quantum dots (SAQDs) were studied by experimental methods. The growth conditions for the SAQDs' formation by molecular beam epitaxy on both matched GaP and artificial GaP/Si substrates were determined. An almost complete plastic relaxation of the elastic strain in SAQDs was reached. The strain relaxation in the SAQDs on the GaP/Si substrates does not lead to a reduction in the SAQDs luminescence efficiency, while the introduction of dislocations into SAQDs on the GaP substrates induced a strong quenching of SAQDs luminescence. Probably, this difference is caused by the introduction of Lomer 90°-dislocations without uncompensated atomic bonds in GaP/Si-based SAQDs, while threading 60°-dislocations are introduced into GaP-based SAQDs. It was shown that GaP/Si-based SAQDs have an energy spectrum of type II with an indirect bandgap and the ground electronic state belonging to the X-valley of the AlP conduction band. The hole localization energy in these SAQDs was estimated equal to 1.65-1.70 eV. This fact allows us to predict the charge storage time in the SAQDs to be as long as >>10 years, and it makes GaSb/AlP SAQDs promising objects for creating universal memory cells.

2.
Nanomaterials (Basel) ; 12(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558302

RESUMO

The use of low-temperature (LT) GaAs layers as dislocation filters in GaAs/Si heterostructures (HSs) was investigated in this study. The effects of intermediate LT-GaAs layers and of the post-growth and cyclic in situ annealing on the structural properties of GaAs/LT-GaAs/GaAs/Si(001) HSs were studied. It was found that the introduction of LT-GaAs layers, in combination with post-growth cyclic annealing, reduced the threading dislocation density down to 5 × 106 cm-2, the root-mean-square roughness of the GaAs surface down to 1.1 nm, and the concentration of non-radiative recombination centers in the near-surface GaAs/Si regions down to the homoepitaxial GaAs level. Possible reasons for the improvement in the quality of near-surface GaAs layers are discussed. On the one hand, the presence of elastic deformations in the GaAs/LT-GaAs system led to dislocation line bending. On the other hand, gallium vacancies, formed in the LT-GaAs layers, diffused into the overlying GaAs layers and led to an increase in the dislocation glide rate. It was demonstrated that the GaAs/Si HSs obtained with these techniques are suitable for growing high-quality light-emitting HSs with self-assembled quantum dots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA