Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37239832

RESUMO

The subject matter of the reported work refers to studying the interactions followed by the excited-state generation, which are chemical models of oxidative processes leading to a weak light emission emerging from living cells, and to explore the possibilities of using them as tools for evaluating the activity of oxygen-metabolism modulators, most prominently, natural bioantioxidants of biomedical value in particular. Methodologically, major attention is paid to analyzing the shapes of the time profiles of the light emission derived from a model sensory system in the presence of lipid samples of vegetable and animal (fish) origin rich in bioantioxidants. As a result, a modified reaction mechanism involving 12 elementary steps is proposed to rationalize the light-emission kinetics in the presence of natural bioantioxidants. We conclude that free radicals formed from bioantioxidants and their dimerization products contribute significantly to the general antiradical activity of lipid samples, which should be taken into account in developing efficient bioantioxidant assays for biomedical applications and while establishing the mechanisms of bioantioxidant effects on metabolic processes in vivo.


Assuntos
Luminescência , Medições Luminescentes , Animais , Oxirredução , Radicais Livres , Lipídeos
2.
Photochem Photobiol ; 95(3): 780-786, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30471123

RESUMO

Updating the facile chemiluminescence oxygen-aftereffect method, most suitable for determining the rate constant (kt ) of the peroxy-radical self-reaction (main chemiluminescence channel), pertained to considering the sensitivity of such a method toward a disturbing influence of the peroxy radicals of the initiator of the chain oxidation process. Such a disturbance may derive from the side chemiluminescent reaction, which involves peroxy radicals of both hydrocarbon and initiator. To examine the applicability and limitations of the chemiluminescence method under present scrutiny, cyclohexene was used as the model oxidizable hydrocarbon substrate. Computer simulations of the reaction and chemiluminescence kinetics have demonstrated the validity of the considered methodology at the value of the rate constant of the propagation of the overall chain process by peroxy radicals of the initiator higher than 1 m-1 s-1 . Despite that the chemiluminescence time profile and the stationary level of the total chemiluminescence intensity depend on the kinetics of the side chemiluminescence channel and on the ratio of the excited-state generation yields in the mentioned reaction channel and in the main chemiluminescence process, the value of kt assessed by the oxygen-aftereffect method has been found independent of variation of these characteristics.

3.
Photochem Photobiol ; 93(2): 579-589, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27935056

RESUMO

The study disclosed herein provides for the first time a detailed experimental support for the general mechanism of the cigarette-smoke-derived chemiluminescence, as an example par excellence of the excited-state generation in a chemically complex aerosol medium. The mechanism involves chemiexcitation in a unimolecular transformation of the smoke-borne free radical species. However, the concentration of these radicals, [r∙], obeys a bimolecular (second-order) kinetics and depends on a particulate-phase content (total particulate matter, TPM) of the cigarette smoke. The decrease in [r∙] with increasing the TPM amount manifests radical-scavenging propensity of the smoke particulate phase. Astonishingly, no energy transfer takes place from the primary excited light-emitting species to luminophoric molecules abundant in the smoke. The reported results build up fundamentals of a facile chemiluminescence assay for free radical properties of the smoke. The experimental approaches developed for this study are of general scope and may be used for mechanistic elucidation of the excited-state generation in chemical systems and environments of an arbitrary complexity.

4.
Beilstein J Org Chem ; 11: 1398-411, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26425195

RESUMO

This study compares the ability to scavenge different peroxyl radicals and to act as chain-breaking antioxidants of monomers related to curcumin (1): dehydrozingerone (2), zingerone (3), (2Z,5E)-ethyl 2-hydroxy-6-(4-hydroxy-3-methoxyphenyl)-4-oxohexa-2,5-dienoate (4), ferulic acid (5) and their corresponding C 2-symmetric dimers 6-9. Four models were applied: model 1 - chemiluminescence (CL) of a hydrocarbon substrate used for determination of the rate constants (k A) of the reactions of the antioxidants with peroxyl radicals; model 2 - lipid autoxidation (lipidAO) used for assessing the chain-breaking antioxidant efficiency and reactivity; model 3 - oxygen radical absorbance capacity (ORAC), which yields the activity against peroxyl radicals generated by an azoinitiator; model 4 - density functional theory (DFT) calculations at UB3LYP/6-31+G(d,p) level, applied to explain the structure-activity relationship. Dimers showed 2-2.5-fold higher values of k A than their monomers. Model 2 gives information about the effects of the side chains and revealed much higher antioxidant activity for monomers and dimers with α,ß-unsaturated side chains. Curcumin and 6 in fact are dimers of the same monomer 2. We conclude that the type of linkage between the two "halves" by which the molecule is made up does not exert influence on the antioxidant efficiency and reactivity of these two dimers. The dimers and the monomers demonstrated higher activity than Trolox (10) in aqueous medium (model 3). A comparison of the studied compounds with DL-α-tocopherol (11), Trolox and curcumin is made. All dimers are characterized through lower bond dissociation enthalpies (BDEs) than their monomers (model 4), which qualitatively supports the experimental results.

5.
Analyst ; 134(10): 2128-34, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19768225

RESUMO

The general approach disclosed herein opens the new possibilities of exploiting the oxidation processes followed by chemiluminescence (CL) emission for the assessment of an antioxidant potential of natural lipid materials and enables determination of the amount and strength of lipid-borne antioxidants in one experiment. The reliability of the analytical procedure is completely unaffected by an inevitable entering of oxidizable lipid portions into the probe chemiluminescent mixture, which is exemplarily illustrated for the case of vegetable oils which served as sources of antioxidant-containing lipids. As a matter of fact, the difference in the effective radical-scavenging rate constants, determined for the antioxidative constituents of the sunflower and corn oils, perfectly matches the distinction of their qualitative tocopherol contents. In addition to the antiradical activity of lipid samples, the antioxidant potential of the latter may be modified by their influence on hydroperoxide stability, as it has been also demonstrated in the present work.


Assuntos
Óleo de Milho/química , Sequestradores de Radicais Livres/química , Medições Luminescentes , Óleos de Plantas/química , Verduras/química , Hidrocarbonetos/química , Peróxido de Hidrogênio/química , Cinética , Óleo de Girassol
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA