Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 42(2): 19, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421481

RESUMO

Maternal hyperhomocysteinemia (HCY) induced by genetic defects in methionine cycle enzymes or vitamin imbalance is known to be a pathologic factor that can impair embryonal brain development and cause long-term consequences in the postnatal brain development as well as changes in the expression of neuronal genes. Studies of the gene expression on this model requires the selection of optimal housekeeping genes. This work aimed to analyze the expression stability of housekeeping genes in offspring brain. Pregnant female Wistar rats were treated daily with a 0.15% L-methionine solution in the period starting on the 4th day of pregnancy until delivery, to cause the increase in the homocysteine level in fetus blood and brain. Housekeeping gene expression was assessed by RT-qPCR on whole embryonic brain and selected rat brain areas at P20 and P90. The amplification curves were analyzed, and raw means Cq data were imported to the RefFinder online tool to assess the reference genes stability. Most of the analyzed genes showed high stability of mRNA expression in the fetal brain at both periods of analysis (E14 and E20). However, the most stably expressed genes at different age points differed. Actb, Ppia, Rpl13a are the most stably expressed on E14, Ywhaz, Pgk1, Hprt1 - on E20 and P20, Hprt1, Actb, and Pgk1 - on P90. Gapdh gene used as a reference in various studies demonstrates high stability only in the hippocampus and cannot be recommended as the optimal reference gene on HCY model. Hprt1 and Pgk1 genes were found to be the most stably expressed in the brain of rat subjected to HCY. These two genes showed high stability in the brain on E20 and in various areas of the brain on the P20 and P90. On E14, the preferred genes for normalization are Actb, Ppia, Rpl13a.


Assuntos
Hiper-Homocisteinemia , Feminino , Gravidez , Ratos , Animais , Hiper-Homocisteinemia/induzido quimicamente , Hiper-Homocisteinemia/genética , Ratos Wistar , Encéfalo , Metionina , Racemetionina , Hipoxantina Fosforribosiltransferase
2.
Biochemistry (Mosc) ; 88(2): 262-279, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37072327

RESUMO

Numerous studies have shown that various adverse factors of different nature and action mechanisms have similar negative influence on placental angiogenesis, resulting in insufficiency of placental blood supply. One of the risk factors for pregnancy complications with placental etiology is an increased level of homocysteine in the blood of pregnant women. However, the effect of hyperhomocysteinemia (HHcy) on the development of the placenta and, in particular, on the formation of its vascular network is at present poorly understood. The aim of this work was to study the effect of maternal HHcy on the expression of angiogenic and growth factors (VEGF-A, MMP-2, VEGF-B, BDNF, NGF), as well as their receptors (VEGFR-2, TrkB, p75NTR), in the rat placenta. The effects of HHcy were studied in the morphologically and functionally different maternal and fetal parts of the placenta on the 14th and 20th day of pregnancy. The maternal HHcy caused increase in the levels of oxidative stress and apoptosis markers accompanied by an imbalance of the studied angiogenic and growth factors in the maternal and/or fetal part of the placenta. The influence of maternal HHcy in most cases manifested in a decrease in the protein content (VEGF-A), enzymatic activity (MMP-2), gene expression (VEGFB, NGF, TRKB), and accumulation of precursor form (proBDNF) of the investigated factors. In some cases, the effects of HHcy differed depending on the placental part and stage of development. The influence of maternal HHcy on signaling pathways and processes controlled by the studied angiogenic and growth factors could lead to incomplete development of the placental vasculature and decrease in the placental transport, resulting in fetal growth restriction and impaired fetal brain development.


Assuntos
Hiper-Homocisteinemia , Placenta , Gravidez , Feminino , Ratos , Humanos , Animais , Placenta/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Hiper-Homocisteinemia/metabolismo , Fator de Crescimento Neural/metabolismo , Fator de Crescimento Neural/farmacologia
3.
Cells ; 12(1)2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611982

RESUMO

Maternal hyperhomocysteinemia causes the disruption of placental blood flow and can lead to serious disturbances in the formation of the offspring's brain. In the present study, the effects of prenatal hyperhomocysteinemia (PHHC) on the neuronal migration, neural tissue maturation, and the expression of signaling molecules in the rat fetal brain were described. Maternal hyperhomocysteinemia was induced in female rats by per os administration of 0.15% aqueous methionine solution in the period of days 4-21 of pregnancy. Behavioral tests revealed a delay in PHHC male pups maturing. Ultrastructure of both cortical and hippocampus tissue demonstrated the features of the developmental delay. PHHC was shown to disturb both generation and radial migration of neuroblasts into the cortical plate. Elevated Bdnf expression, together with changes in proBDNF/mBDNF balance, might affect neuronal cell viability, positioning, and maturation in PHHC pups. Reduced Kdr gene expression and the content of SEMA3E might lead to impaired brain development. In the brain tissue of E20 PHHC fetuses, the content of the procaspase-8 was decreased, and the activity level of the caspase-3 was increased; this may indicate the development of apoptosis. PHHC disturbs the mechanisms of early brain development leading to a delay in brain tissue maturation and formation of the motor reaction of pups.


Assuntos
Hiper-Homocisteinemia , Ratos , Animais , Feminino , Gravidez , Masculino , Ratos Wistar , Hiper-Homocisteinemia/metabolismo , Placenta/metabolismo , Encéfalo/metabolismo , Neurogênese
4.
Front Neurosci ; 16: 867120, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495064

RESUMO

Prenatal hypoxia is a widespread condition that causes various disturbances in later life, including aberrant central nervous system development, abnormalities in EEG rhythms, and susceptibility to seizures. Hypoxia in rats on the 14th day of embryogenesis (E14) disrupts cortical neuroblast radial migration, mainly affecting the progenitors of cortical glutamatergic neurons but not GABAergic interneurons or hippocampal neurons. Thus, hypoxia at this time point might affect the development of the neocortex to a greater extent than the hippocampus. In the present study, we investigated the long-term effects of hypoxia on the properties of the pyramidal neurons in the hippocampus and entorhinal cortex (EC) in 3-week-old rats subjected to hypoxia on E14. We observed a reduction in the total number of NeuN-positive neurons in EC but not in the CA1 field of the hippocampus, indicating an increased cell loss in EC. However, the principal neuron electrophysiological characteristics were altered in the EC and hippocampus of animals exposed to hypoxia. The whole-cell patch-clamp recordings revealed a similar increase in input resistance in neurons from the hippocampus and EC. However, the resting membrane potential was increased in the EC neurons only. The recordings of field postsynaptic potentials (fPSPs) in the CA1 hippocampal area showed that both the threshold currents inducing fPSPs and population spikes were lower in hypoxic animals compared to age-matched controls. Using the dosed electroshock paradigm, we found that seizure thresholds were lower in the hypoxic group. Thus, the obtained results suggest that maternal hypoxia during the generation of the pyramidal cortical neurons leads to the increased excitability of neuronal circuitries in the brain of young rats. The increased excitability can be attributed to the changes in intrinsic neuronal properties.

5.
Nutrients ; 14(7)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35406012

RESUMO

The protective effects of recombinant human lactoferrin rhLF (branded "CAPRABEL™") on the cognitive functions of rat offspring subjected to prenatal hypoxia (7% O2, 3 h, 14th day of gestation) have been analyzed. About 90% of rhLF in CAPRABEL was iron-free (apo-LF). Rat dams received several injections of 10 mg of CAPRABEL during either gestation (before and after the hypoxic attack) or lactation. Western blotting revealed the appearance of erythropoietin (EPO) alongside the hypoxia-inducible factors (HIFs) in organ homogenates of apo-rhLF-treated pregnant females, their embryos (but not placentas), and in suckling pups from the dams treated with apo-rhLF during lactation. Apo-rhLF injected to rat dams either during pregnancy or nurturing the pups was able to rescue cognitive deficits caused by prenatal hypoxia and improve various types of memory both in young and adult offspring when tested in the radial maze and by the Novel Object Recognition (NOR) test. The data obtained suggested that the apo-form of human LF injected to female rats during gestation or lactation protects the cognitive functions of their offspring impaired by prenatal hypoxia.


Assuntos
Eritropoetina , Lactoferrina , Animais , Cognição , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Feminino , Hipóxia/complicações , Hipóxia/tratamento farmacológico , Gravidez , Ratos , Proteínas Recombinantes/farmacologia , Vitaminas
6.
Cells ; 10(6)2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207057

RESUMO

Maternal hyperhomocysteinemia is one of the common complications of pregnancy that causes offspring cognitive deficits during postnatal development. In this study, we investigated the effect of prenatal hyperhomocysteinemia (PHHC) on inflammatory, glial activation, and neuronal cell death markers in the hippocampus of infant rats. Female Wistar rats received L-methionine (0.6 g/kg b.w.) by oral administration during pregnancy. On postnatal days 5 and 20, the offspring's hippocampus was removed to perform histological and biochemical studies. After PHHC, the offspring exhibited increased brain interleukin-1ß and interleukin-6 levels and glial activation, as well as reduced anti-inflammatory interleukin-10 level in the hippocampus. Additionally, the activity of acetylcholinesterase was increased in the hippocampus of the pups. Exposure to PHHC also resulted in the reduced number of neurons and disrupted neuronal ultrastructure. At the same time, no changes in the content and activity of caspase-3 were found in the hippocampus of the pups. In conclusion, our findings support the hypothesis that neuroinflammation and glial activation could be involved in altering the hippocampus cellular composition following PHHC, and these alterations could be associated with cognitive disorders later in life.


Assuntos
Biomarcadores/metabolismo , Hipocampo/metabolismo , Hiper-Homocisteinemia/metabolismo , Inflamação/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Acetilcolinesterase/metabolismo , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Encéfalo/patologia , Caspase 3/metabolismo , Citocinas/metabolismo , Feminino , Hipocampo/patologia , Hiper-Homocisteinemia/patologia , Inflamação/patologia , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Metionina/metabolismo , Neuroglia/patologia , Neurônios/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
7.
Dev Neurosci ; 41(1-2): 56-66, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30904914

RESUMO

Using electrocorticogram (ECoG) analysis, we compared age-related dynamics of general neuronal activity and convulsive epileptiform responsiveness induced by intracortical microinjections of 4-aminopyridine (4-AP) in control Wistar rats and those subjected to prenatal hypoxia (Hx; E14; 7% O2, 3 h). The studies were carried out in three age periods roughly corresponding to childhood (P20-27), adolescence (P30-45), and adulthood (P90-120). It was found that in the process of postnatal development of the control rats, the peak of the ECoG power spectrum density (PSD) of the theta rhythm during wakefulness shifted from the low to the higher frequency, while in the Hx rats this shift had the opposite direction. Moreover, the Hx rats had different frequency characteristics of the ECoG PSD and longer episodes of spike-and-wave discharges caused by 4-AP injections compared to the controls. The total ECoG PSD of slow-wave sleep (1-5 Hz) was also dramatically decreased in the process of development of the Hx rats. Such alterations in PSD could be explained by the changes in balance of the excitation and inhibition processes in the cortical networks. Analyzing protein levels of neurotransmitter transporters in the brain structures of the Hx rats, we found that the content of the glutamate transporter EAAT1 was higher in the parietal cortex in all age groups of Hx rats while in the hippocampus it decreased during postnatal development compared to controls. Furthermore, the content of the vesicular acetylcholine transporter in the parietal cortex, and of the inhibitory GABA transporter 1 in the hippocampus, was also affected by prenatal Hx. These data suggest that prenatal Hx results in a shift in the excitatory and inhibitory balance in the rat cortex towards excitation, making the rat's brain more vulnerable to the effects of proconvulsant drugs and predisposing animals to epileptogenesis during postnatal life.


Assuntos
Hipóxia Fetal/metabolismo , Hipóxia Fetal/fisiopatologia , Proteínas de Transporte de Neurotransmissores/metabolismo , 4-Aminopiridina/toxicidade , Animais , Convulsivantes/toxicidade , Eletrocorticografia , Feminino , Bloqueadores dos Canais de Potássio/toxicidade , Gravidez , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Convulsões/fisiopatologia
8.
Front Neurosci ; 10: 126, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065788

RESUMO

Long-term effects of prenatal hypoxia on embryonic days E14 or E18 on the number, type and localization of cortical neurons, density of labile synaptopodin-positive dendritic spines, and parietal cortex-dependent behavioral tasks were examined in the postnatal ontogenesis of rats. An injection of 5'ethynyl-2'deoxyuridine to pregnant rats was used to label neurons generated on E14 or E18 in the fetuses. In control rat pups a majority of cells labeled on E14 were localized in the lower cortical layers V-VI while the cells labeled on E18 were mainly found in the superficial cortical layers II-III. It was shown that hypoxia both on E14 and E18 results in disruption of neuroblast generation and migration but affects different cell populations. In rat pups subjected to hypoxia on E14, the total number of labeled cells in the parietal cortex was decreased while the number of labeled neurons scattered within the superficial cortical layers was increased. In rat pups subjected to hypoxia on E18, the total number of labeled cells in the parietal cortex was also decreased but the number of scattered labeled neurons was higher in the lower cortical layers. It can be suggested that prenatal hypoxia both on E14 and E18 causes a disruption in neuroblast migration but with a different outcome. Only in rats subjected to hypoxia on E14 did we observe a reduction in the total number of pyramidal cortical neurons and the density of labile synaptopodin-positive dendritic spines in the molecular cortical layer during the first month after birth which affected development of the cortical functions. As a result, rats subjected to hypoxia on E14, but not on E18, had impaired development of the whisker-placing reaction and reduced ability to learn reaching by a forepaw. The data obtained suggest that hypoxia on E14 in the period of generation of the cells, which later differentiate into the pyramidal cortical neurons of the V-VI layers and form cortical minicolumns, affects formation of cortical cytoarchitecture, neuronal plasticity and behavior in postnatal ontogenesis which testify to cortical dysfunction. Hypoxia on E18 does not significantly affect cortical structure and parietal cortex-dependent behavioral tasks.

9.
Biogerontology ; 16(4): 473-84, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25792373

RESUMO

Due to an increasing life expectancy in developing countries, cases of type 2 diabetes and Alzheimer's disease (AD) in the elderly are growing exponentially. Despite a causative link between diabetes and AD, general molecular mechanisms underlying pathogenesis of these disorders are still far from being understood. One of the factors leading to cell death and cognitive impairment characteristic of AD is accumulation in the brain of toxic aggregates of amyloid-ß peptide (Aß). In the normally functioning brain Aß catabolism is regulated by a cohort of proteolytic enzymes including insulin-degrading enzyme (IDE) and their deficit with ageing can result in Aß accumulation and increased risk of AD. The aim of this study was a comparative analysis of IDE expression in the brain structures involved in AD, as well as in peripheral organs (the liver and kidney) of rats, during natural ageing and after experimentally-induced diabetes. It was found that ageing is accompanied by a significant decrease of IDE mRNA and protein content in the liver (by 32 and 81%) and brain structures (in the cortex by 58 and 47% and in the striatum by 53 and 68%, respectively). In diabetic animals, IDE protein level was increased in the liver (by 36%) and in the striatum (by 42%) while in the brain cortex and hippocampus it was 20-30% lower than in control animals. No significant IDE protein changes were observed in the kidney of diabetic rats. These data testify that ageing and diabetes are accompanied by a deficit of IDE in the brain structures where accumulation of Aß was reported in AD patients, which might be one of the factors predisposing to development of the sporadic form of AD in the elderly, and especially in diabetics.


Assuntos
Envelhecimento/metabolismo , Encéfalo/enzimologia , Diabetes Mellitus Experimental/enzimologia , Insulisina/metabolismo , Rim/enzimologia , Fígado/enzimologia , Fatores Etários , Envelhecimento/genética , Doença de Alzheimer/enzimologia , Doença de Alzheimer/etiologia , Peptídeos beta-Amiloides/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/genética , Regulação Enzimológica da Expressão Gênica , Insulisina/genética , Masculino , RNA Mensageiro/metabolismo , Ratos Wistar , Fatores de Risco , Estreptozocina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA