Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biomed Opt ; 19(12): 127005, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25517257

RESUMO

We describe a method for dual-view biomechanical strain measurements of highly asymmetrical biological objects, like teeth or bones. By using a spherical mirror, we were able to simultaneously record a digital hologram of the object itself and the mirror image of its (otherwise invisible) rear side. A single laser beam was sufficient to illuminate both sides of the object, and to provide a reference beam. As a result, the system was mechanically very stable, enabling long exposure times (up to 2 min) without the need for vibration isolation. The setup is simple to construct and adjust, and can be used to interferometrically observe any object that is smaller than the mirror diameter. Parallel data processing on a CUDA-enabled (compute unified device architecture) graphics card was used to reconstruct digital holograms and to further correct image distortion. We used the setup to measure the deformation of a tooth due to mastication forces. The finite-element method was used to compare experimental results and theoretical predictions.


Assuntos
Fenômenos Biomecânicos/fisiologia , Holografia/instrumentação , Holografia/métodos , Interferometria/instrumentação , Interferometria/métodos , Dente Pré-Molar/fisiologia , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Processamento de Imagem Assistida por Computador , Mastigação/fisiologia
2.
Lasers Surg Med ; 42(4): 338-47, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20432283

RESUMO

BACKGROUND AND OBJECTIVE: Laser phototherapy could be potentially used for cancer treatment, but the mechanisms of laser-induced cell death are not completely understood. Autophagy is the process in which the damaged cellular proteins and organelles are engulfed by and destroyed in acidified multiple-membrane vesicles. The aim of the present study was to investigate the role of autophagy in laser-induced tumor cell death in vitro. STUDY DESIGN/MATERIALS AND METHODS: The monolayers of U251 human glioma tumor cells were exposed to 532 nm laser light from a single mode frequency-doubled Nd-YVO4 laser. A flattened Gaussian radial profile of laser beam (0.5-4 W) was used to uniformly illuminate entire colony of cells for various amounts of time (15-120 seconds) in the absence of cell culture medium. The cells were grown for 24 hours and the cell viability was determined by crystal violet or MTT assay. The presence of autophagy was assessed after 16 hours by fluorescence microscopy/flow cytometric analysis of acridine orange-stained autophagolysosomes and Western blot analysis of the autophagosome-associated LC3-II protein. The concentration of the principal pro-autophagic protein beclin-1 was determined after 6 hours by cell-based ELISA. RESULTS: The intracytoplasmic accumulation of autophagic vesicles, increase in LC3-II and up-regulation of beclin-1 expression were clearly observed under irradiation conditions that caused approximately 50% cytotoxicity. Post-irradiation addition of three different autophagy inhibitors (bafilomycin A1, chloroquine, or wortmannin) further increased the laser-induced cytotoxicity, without affecting non-irradiated cells. CONCLUSIONS: These data indicate that beclin-1-dependent induction of autophagy can protect glioma cells from laser-mediated cytotoxicity.


Assuntos
Autofagia , Glioma/patologia , Terapia a Laser/métodos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Western Blotting , Proliferação de Células , Sobrevivência Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Hipertermia Induzida , Técnicas In Vitro , Terapia a Laser/instrumentação , Lasers de Estado Sólido , Microscopia de Fluorescência , Necrose , Células Tumorais Cultivadas , Regulação para Cima
3.
Appl Opt ; 46(35): 8527-32, 2007 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-18071385

RESUMO

Gelatin sensitized with tot'hema and eosin (compounds used in medical therapy) appears to be an excellent material for microlens fabrication. Lenses are produced by irradiation with a 532 nm laser beam. Aspheric concave lenses are formed rapidly with low power radiation. The lens profile is analyzed, as well as imaging properties. Physics of lens formation is also proposed. All material constituents are nonpoisonous, resulting in an environmentally safe, low toxicity material.


Assuntos
Desenho Assistido por Computador , Amarelo de Eosina-(YS)/química , Gelatina/química , Compostos de Ferro/química , Lentes , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA