Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37095286

RESUMO

Tendentious projections about COVID-19 in Brazil provided an appealing excuse for individuals and decision-makers to justify poor choices during a critical phase of the pandemic. The erroneous results likely contributed to premature resumption of in-person school classes and easing of restrictions on social contact, favoring the resurgence of COVID-19. In Manaus, the largest city in the Amazon region, the COVID-19 pandemic did not end in 2020 of its own accord, but rather rebounded in a disastrous second wave of the disease.

2.
J Racial Ethn Health Dis, in press, abr. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4895

RESUMO

Tendentious projections about COVID-19 in Brazil provided an appealing excuse for individuals and decision-makers to justify poor choices during a critical phase of the pandemic. The erroneous results likely contributed to premature resumption of in-person school classes and easing of restrictions on social contact, favoring the resurgence of COVID-19. In Manaus, the largest city in the Amazon region, the COVID-19 pandemic did not end in 2020 of its own accord, but rather rebounded in a disastrous second wave of the disease.

3.
Prev Med Rep ; 26: 101752, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35242505

RESUMO

The city of Manaus (the capital of Brazil's state of Amazonas) has become a key location for understanding the dynamics of the global pandemic of COVID-19. Different groups of scientists have foreseen different scenarios, such as the second wave or that Manaus could escape such a wave by having reached herd immunity. Here we test five hypotheses that explain the second wave of COVID-19 in Manaus: 1) The greater transmissibility of the Amazonian (gamma or P.1) variant is responsible for the second wave; 2) SARS-CoV-2 infection levels during the first wave were overestimated by those foreseeing herd immunity, and the population remained below this threshold when the second wave began at the beginning of December 2020; 3) Antibodies acquired from infection by one lineage do not confer immunity against other lineages; 4) Loss of immunity has generated a feedback phenomenon among infected people, which could generate future waves, and 5) A combination of the foregoing hypotheses. We also evaluated the possibility of a third wave in Manaus despite advances in vaccination, the new wave being due to the introduction of the delta variant in the region and the loss of immunity from natural contact with the virus. We developed a multi-strain SEIRS (Susceptible-Exposed-Infected-Removed-Susceptible) model and fed it with data for Manaus on mobility, COVID-19 hospitalizations, numbers of cases and deaths. Our model contemplated the current vaccination rates for all vaccines applied in Manaus and the individual protection rates already known for each vaccine. Our results indicate that the SARS-CoV-2 gamma (P.1) strain that originated in the Amazon region is not the cause of the second wave of COVID-19 in Manaus, but rather this strain originated during the second wave and became predominant in January 2021. Our multi-strain SEIRS model indicates that neither the doubled transmission rate of the gamma variant nor the loss of immunity alone is sufficient to explain the sudden rise of hospitalizations in late December 2020. Our results also indicate that the most plausible explanation for the current second wave is a SARS-CoV-2 infection level at around 50% of the population in early December 2020, together with loss of population immunity and early relaxation of restrictive measures. The most-plausible model indicates that contact with one strain does not provide protection against other strains and that the gamma variant has a transmissibility rate twice that of the original SARS-CoV-2 strain. Our model also shows that, despite the advance of vaccination, and even if future vaccination advances at a steady pace, the introduction of the delta variant or other new variants could cause a new wave of COVID-19.

4.
J Racial Ethn Health Disparities ; 9(6): 2098-2104, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34590244

RESUMO

Is Brazil's COVID-19 epicenter really approaching herd immunity? A recent study estimated that in October 2020 three-quarters of the population of Manaus (the capital of the largest state in the Brazilian Amazon) had contact with SARS-CoV-2. We show that 46% of the Manaus population having had contact with SARS-CoV-2 at that time is a more plausible estimate, and that Amazonia is still far from herd immunity. The second wave of COVID-19 is now evident in Manaus. We predict that the pandemic of COVID-19 will continue throughout 2021, given the duration of naturally acquired immunity of only 240 days and the slow pace of vaccination. Manaus has a large percentage of the population that is susceptible (35 to 45% as of May 17, 2021). Against this backdrop, measures to restrict urban mobility and social isolation are still necessary, such as the closure of schools and universities, since the resumption of these activities in 2020 due to the low attack rates of SARS-CoV-2 was the main trigger for the second wave in Manaus.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , Brasil/epidemiologia , Pandemias , Imunidade Coletiva
5.
Prev Med Rep, v. 26, 101752, abr. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4245

RESUMO

The city of Manaus (the capital of Brazil’s state of Amazonas) has become a key location for understanding the dynamics of the global pandemic of COVID-19. Different groups of scientists have foreseen different scenarios, such as the second wave or that Manaus could escape such a wave by having reached herd immunity. Here we test five hypotheses that explain the second wave of COVID-19 in Manaus: 1) The greater transmissibility of the Amazonian (gamma or P.1) variant is responsible for the second wave; 2) SARS-CoV-2 infection levels during the first wave were overestimated by those foreseeing herd immunity, and the population remained below this threshold when the second wave began at the beginning of December 2020; 3) Antibodies acquired from infection by one lineage do not confer immunity against other lineages; 4) Loss of immunity has generated a feedback phenomenon among infected people, which could generate future waves, and 5) A combination of the foregoing hypotheses. We also evaluated the possibility of a third wave in Manaus despite advances in vaccination, the new wave being due to the introduction of the delta variant in the region and the loss of immunity from natural contact with the virus. We developed a multi-strain SEIRS (Susceptible-Exposed-Infected-Removed-Susceptible) model and fed it with data for Manaus on mobility, COVID-19 hospitalizations, numbers of cases and deaths. Our model contemplated the current vaccination rates for all vaccines applied in Manaus and the individual protection rates already known for each vaccine. Our results indicate that the SARS-CoV-2 gamma (P.1) strain that originated in the Amazon region is not the cause of the second wave of COVID-19 in Manaus, but rather this strain originated during the second wave and became predominant in January 2021. Our multi-strain SEIRS model indicates that neither the doubled transmission rate of the gamma variant nor the loss of immunity alone is sufficient to explain the sudden rise of hospitalizations in late December 2020. Our results also indicate that the most plausible explanation for the current second wave is a SARS-CoV-2 infection level at around 50% of the population in early December 2020, together with loss of population immunity and early relaxation of restrictive measures. The most-plausible model indicates that contact with one strain does not provide protection against other strains and that the gamma variant has a transmissibility rate twice that of the original SARS-CoV-2 strain. Our model also shows that, despite the advance of vaccination, and even if future vaccination advances at a steady pace, the introduction of the delta variant or other new variants could cause a new wave of COVID-19.

6.
J Public Health Policy ; 42(3): 439-451, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34453095

RESUMO

In this manuscript, we point out that the federal government headed by President Bolsonaro has pursued a political agenda that contributed to the spread of COVID-19, transforming the country into a major repository for SARS-CoV-2 and its variants, thus representing a risk for worldwide containment efforts. Furthermore his actions are also weakening democratic institutions, which could counter his political agenda, effectively facilitating the spread of COVID-19. Thus, the perpetuation of the COVID-19 pandemic in Brazil is due to human behaviour factors, especially high-level public decision makers.


Assuntos
COVID-19 , Governo Federal , Saúde Global , Pandemias , Política , Brasil/epidemiologia , COVID-19/epidemiologia , Saúde Global/estatística & dados numéricos , Humanos , SARS-CoV-2
7.
J Racial Ethn Health Disparities ; 8(4): 821-823, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34155594

RESUMO

We report the first confirmed record of a SARS-CoV-2 immunity loss and reinfection for the Amazon region and for Brazil by the same virus lineage. The patient presented an asymptomatic condition the first time and an aggravated one after reinfection. We raise the possibility of a recessive genotype in the Amazonian population that does not generate an immune memory response to SARS-CoV-2.


Assuntos
COVID-19/imunologia , Reinfecção/virologia , SARS-CoV-2/imunologia , Brasil , Feminino , Humanos , SARS-CoV-2/genética , Adulto Jovem
8.
J Racial Ethn Health Disparities, v. 9, 2098-2104, set. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3993

RESUMO

Is Brazil’s COVID-19 epicenter really approaching herd immunity? A recent study estimated that in October 2020 three-quarters of the population of Manaus (the capital of the largest state in the Brazilian Amazon) had contact with SARS-CoV-2. We show that 46% of the Manaus population having had contact with SARS-CoV-2 at that time is a more plausible estimate, and that Amazonia is still far from herd immunity. The second wave of COVID-19 is now evident in Manaus. We predict that the pandemic of COVID-19 will continue throughout 2021, given the duration of naturally acquired immunity of only 240 days and the slow pace of vaccination. Manaus has a large percentage of the population that is susceptible (35 to 45% as of May 17, 2021). Against this backdrop, measures to restrict urban mobility and social isolation are still necessary, such as the closure of schools and universities, since the resumption of these activities in 2020 due to the low attack rates of SARS-CoV-2 was the main trigger for the second wave in Manaus.

9.
J Public Health Policy, in press, ago. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3930

RESUMO

In this manuscript, we point out that the federal government headed by President Bolsonaro has pursued a political agenda that contributed to the spread of COVID-19, transforming the country into a major repository for SARS-CoV-2 and its variants, thus representing a risk for worldwide containment efforts. Furthermore his actions are also weakening democratic institutions, which could counter his political agenda, effectively facilitating the spread of COVID-19. Thus, the perpetuation of the COVID-19 pandemic in Brazil is due to human behaviour factors, especially high-level public decision makers.

10.
J Racial Ethn Health Disparities, v. 8, n. 4, p. 821-823, ago. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3867

RESUMO

We report the first confirmed record of a SARS-CoV-2 immunity loss and reinfection for the Amazon region and for Brazil by the same virus lineage. The patient presented an asymptomatic condition the first time and an aggravated one after reinfection. We raise the possibility of a recessive genotype in the Amazonian population that does not generate an immune memory response to SARS-CoV-2.

12.
Protein J ; 38(1): p. 83–94, 2019.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15899

RESUMO

Amphibians are, currently, considered the first vertebrates that had performed the aquatic to terrestrial transition during evolution; therefore, water balance and dehydration control were prerequisites for such environment conquering. Among anurans, Phyllomedusa is a well-studied genus, due to its peptide-rich skin secretion. Here, we have analyzed the skin secretion of Phyllomedusa distincta targeting the proteins present in the skin secretion. The major soluble protein was chromatographically isolated and utilized to immunize rabbits. Through proteomics approaches, we were able to identify such protein as being the diacylglycerol O-acyltransferase 2 (DGAT2), a crucial enzyme involved in lipid synthesis and in the skin water balance. Immunohistochemistry assays revealed the protein tissular distribution for different animal species, belonging to different branches of the phylogenetic tree. Specifically, there was positivity to the anti-DGAT2 on Amphibians’ skin, and no antibody recognition on fish and mammals’ skins. The DGAT2 multiple sequence alignment reveals some degree of conservation throughout the genera; however, there is a different cysteine pattern among them. Molecular modeling analyses corroborate that the different cysteine pattern leads to distinct 3D structures, explaining the different antibody recognition. Moreover, the protein phylogenetic analyses place the Xenopus DGAT2 (the available amphibian representative) next to the Coelacanthus enzyme, which have led the authors to term this a ‘paleo-protein’. DGAT2 would be, therefore, an ancient protein, crucial to the terrestrial environment conquest, with a unique folding—as indicated by the molecular models and immunohistochemistry analyses—a consequence of the different cysteine pattern but with conserved biological function.

13.
Protein J, v. 38, n. 1, p. 83-94, fev. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2703

RESUMO

Amphibians are, currently, considered the first vertebrates that had performed the aquatic to terrestrial transition during evolution; therefore, water balance and dehydration control were prerequisites for such environment conquering. Among anurans, Phyllomedusa is a well-studied genus, due to its peptide-rich skin secretion. Here, we have analyzed the skin secretion of Phyllomedusa distincta targeting the proteins present in the skin secretion. The major soluble protein was chromatographically isolated and utilized to immunize rabbits. Through proteomics approaches, we were able to identify such protein as being the diacylglycerol O-acyltransferase 2 (DGAT2), a crucial enzyme involved in lipid synthesis and in the skin water balance. Immunohistochemistry assays revealed the protein tissular distribution for different animal species, belonging to different branches of the phylogenetic tree. Specifically, there was positivity to the anti-DGAT2 on Amphibians’ skin, and no antibody recognition on fish and mammals’ skins. The DGAT2 multiple sequence alignment reveals some degree of conservation throughout the genera; however, there is a different cysteine pattern among them. Molecular modeling analyses corroborate that the different cysteine pattern leads to distinct 3D structures, explaining the different antibody recognition. Moreover, the protein phylogenetic analyses place the Xenopus DGAT2 (the available amphibian representative) next to the Coelacanthus enzyme, which have led the authors to term this a ‘paleo-protein’. DGAT2 would be, therefore, an ancient protein, crucial to the terrestrial environment conquest, with a unique folding—as indicated by the molecular models and immunohistochemistry analyses—a consequence of the different cysteine pattern but with conserved biological function.

14.
Clin Toxicol (Phila) ; 55(1): 33-39, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27595162

RESUMO

CONTEXT: Although rare, coral snake envenomation is a serious health threat in Brazil, because of the highly neurotoxic venom and the scarcely available antivenom. The major bottleneck for antivenom production is the low availability of venom. Furthermore, the available serum is not effective against all coral snake species found in Brazil. An alternative to circumvent the lack of venom for serum production and the restricted protection of the actually available antivenom would be of great value. We compared the Brazilian coral snake and mono and polyvalent Australian antivenoms in terms of reactivity and protection. METHODS: The immunoreactivity of venoms from 9 coral snakes species were assayed by ELISA and western blot using the Brazilian Micrurus and the Australian pentavalent as well as monovalent anti-Notechis, Oxyuranus and Pseudechis antivenoms. Neutralization assays were performed in mice, using 3 LD50 of the venoms, incubated for 30 minutes with 100 µL of antivenom/animal. DISCUSSION: All the venoms reacted against the autologous and heterologous antivenoms. Nevertheless, the neutralization assays showed that the coral snake antivenom was only effective against M. corallinus, M. frontalis, M. fulvius, M. nigrocinctus and M. pyrrhocryptus venoms. On the other hand, the Australian pentavalent antivenom neutralized all venoms except the one from M. spixii. A combination of anti-Oxyuranus and Pseudechis monovalent sera, extended the protection to M. altirostris and, partially, to M. ibiboboca. By adding Notechis antivenom to this mixture, we obtained full protection against M. ibiboboca and partial neutralization against M. lemniscatus venoms. CONCLUSIONS: Our findings confirm the limited effectiveness of the Brazilian coral snake antivenom and indicate that antivenoms made from Australian snakes venoms are an effective alternative for coral snake bites in South America and also in the United States were coral snake antivenom production has been discontinued.


Assuntos
Antivenenos/administração & dosagem , Venenos Elapídicos/antagonistas & inibidores , Mordeduras de Serpentes/tratamento farmacológico , Animais , Antivenenos/imunologia , Austrália , Western Blotting , Brasil , Reações Cruzadas/imunologia , Venenos Elapídicos/imunologia , Elapidae , Ensaio de Imunoadsorção Enzimática , Feminino , Dose Letal Mediana , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização
15.
Clin. Toxicol. ; 55(1): 33-39, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13601

RESUMO

Context: Although rare, coral snake envenomation is a serious health threat in Brazil, because of the highly neurotoxic venom and the scarcely available antivenom. The major bottleneck for antivenom production is the low availability of venom. Furthermore, the available serum is not effective against all coral snake species found in Brazil. An alternative to circumvent the lack of venom for serum production and the restricted protection of the actually available antivenom would be of great value. We compared the Brazilian coral snake and mono and polyvalent Australian antivenoms in terms of reactivity and protection. Methods: The immunoreactivity of venoms from 9 coral snakes species were assayed by ELISA and western blot using the Brazilian Micrurus and the Australian pentavalent as well as monovalent antiNotechis, Oxyuranus and Pseudechis antivenoms. Neutralization assays were performed in mice, using 3 LD50 of the venoms, incubated for 30 minutes with 100 mu L of antivenom/animal. Discussion: All the venoms reacted against the autologous and heterologous antivenoms. Nevertheless, the neutralization assays showed that the coral snake antivenom was only effective against M. corallinus, M. frontalis, M. fulvius, M. nigrocinctus and M. pyrrhocryptus venoms. On the other hand, the Australian pentavalent antivenom neutralized all venoms except the one from M. spixii. A combination of anti-Oxyuranus and Pseudechis monovalent sera, extended the protection to M. altirostris and, partially, to M. ibiboboca. By adding Notechis antivenom to this mixture, we obtained full protection against M. ibiboboca and partial neutralization against M. lemniscatus venoms. Conclusions: Our findings confirm the limited effectiveness of the Brazilian coral snake antivenom and indicate that antivenoms made from Australian snakes venoms are an effective alternative for coral snake bites in South America and also in the United States were coral snake antivenom production has been discontinued.

16.
Toxicon ; 122: p. 133-141, 2016.
Artigo | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14163

RESUMO

Corythomantis greeningi is a tree-frog endemic of the Brazilian semi-arid (Caatinga), mainly characterized by the flat, mineralized and spiny head, which is associated with phragmotic habits. It is already known that the skin secretion of this amphibian from both head and body is quite toxic and is used as an efficient chemical defence against predators. However, the biochemical characteristics and pharmacological effects of this secretion are still very little studied. We have tested the crude skin secretion, as well as the ten major fractions obtained by RP-HPLC for nociceptive and edema activity and for in vitro cytotoxicity using murine models. SDS-PAGE analyses demonstrated that the majority of proteins ranging through the gel lie between 55 and 30 kDa. LC-MS analysis showed multiple low molecular mass molecules (200-500 Da), which are consistent with masses of alkaloids and steroids. The crude skin secretion was able to induce fast and persistent edema accompanied by intense dose-dependent nociception. From the 10 tested fractions, five induced both edema and nociception, six fractions were able to induce only edema (80-170% control), and seven fractions induced only nociception (15-30 times compared to control). In addition, inhibition of cell growth (IC50) was demonstrated in murine fibroblasts and melanoma cells. From the data obtained, we confirmed that the skin secretion of C. greeningi is very toxic and is rich in compounds able to directly provoke local inflammation and nociception. Such characteristics are important as part of the chemical defensive repertory of this species. (C) 2016 Elsevier Ltd. All rights reserved.


Assuntos
Toxicologia , Patologia
17.
Int J Pharm ; 387(1-2): 215-22, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19969053

RESUMO

PEGylation is a successful strategy for improving the biochemical and biopharmaceutical properties of proteins and peptides through the covalent attachment of polyethylene glycol chains. In this work, purified recombinant uricase from Candida sp. (UC-r) was modified by PEGylation with metoxypolyethilenoglycol-p-nitrophenyl-carbonate (mPEG-pNP) and metoxypolyethyleneglycol-4,6-dichloro-s-triazine (mPEG-CN). The UC-r-mPEG-pNP and UC-r-mPEG-CN conjugates retained 87% and 75% enzyme activity respectively. The K(M) values obtained 2.7x10(-5) M (mPEG-pNP) or 3.0x10(-5) M (mPEG-CN) for the conjugates as compared to 5.4x10(-5) M for the native UC-r, suggesting enhancement in the substrate affinity of the enzyme attached. The effects of pH and temperature on PEGylated UC-r indicated that the conjugates were more active at close physiological pH and were stable up to 70 degrees C. Spectroscopic study performed by circular dichroism at 20 degrees C and 50 degrees C did not show any relevant difference in protein structure between native and PEGylated UC-r. In rabbit and Balb/c mice, the native UC-r elicited an intense immune response being highly immunogenic. On the other hand, the PEGylated UC-r when injected chronically in mice did not induce any detectable antibody response. This indicates sufficient reduction of the immunogenicity this enzyme by mPEG-pNP or mPEG-CN conjugation, making it suitable for a possible therapeutical use.


Assuntos
Candida/enzimologia , Portadores de Fármacos/química , Polietilenoglicóis/química , Urato Oxidase/química , Animais , Dicroísmo Circular , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes , Temperatura , Urato Oxidase/imunologia
18.
International Journal of Pharmaceutics ; 387(1-2): 215-222, 2010.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1063607

RESUMO

PEGylation is a successful strategy for improving the biochemical and biopharmaceutical properties of proteins and peptides through the covalent attachment of polyethylene glycol chains. In this work, purified recombinant uricase from Candida sp. (UC-r) was modified by PEGylation with metoxypolyethilenoglycol-p-nitrophenyl-carbonate (mPEG-pNP) and metoxypolyethyleneglycol-4,6-dichloro-s-triazine (mPEG-CN). The UC-r-mPEG-pNP and UC-r-mPEG-CN conjugates retained 87% and 75% enzyme activity respectively. The KM values obtained 2.7×10-5M (mPEG-pNP) or 3.0×10-5M (mPEG-CN) for the conjugates as compared to 5.4×10-5M for the native UC-r, suggesting enhancement in the substrate affinity of the enzyme attached. The effects of pH and temperature on PEGylated UC-r indicated that the conjugates were more active at close physiological pH and were stable up to 70°C. Spectroscopic study performed by circular dichroism at 20°C and 50°C did not show any relevant difference in protein structure between native and PEGylated UC-r. In rabbit and Balb/c mice, the native UC-r elicited an intense immune response being highly immunogenic. On the other hand, the PEGylated UC-r when injected chronically in mice did not induce any detectable antibody response. This indicates sufficient reduction of the immunogenicity this enzyme by mPEG-pNP or mPEG-CN conjugation, making it suitable for a possible therapeutical use.


Assuntos
Animais , Camundongos , Coelhos , Gota , Hiperuricemia
20.
Int J Pharm ; 387(1-2): p.215-22, 2010.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib9885

Assuntos
Bioquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA