Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487086

RESUMO

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Assuntos
Mioquimia , Animais , Camundongos , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potássio Kv1.2
3.
Neurobiol Aging ; 123: 200-207, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549973

RESUMO

Genetic risk for amyotrophic lateral sclerosis (ALS) is highly elevated in genetic isolates, like the island population of Malta in the south of Europe, providing a unique opportunity to investigate the genetics of this disease. Here we characterize the clinical phenotype and genetic profile of the largest series of Maltese ALS patients to date identified throughout a 5-year window. Cases and controls underwent neuromuscular assessment and analysis of rare variants in ALS causative or risk genes following whole-genome sequencing. Potentially damaging variants or repeat expansions were identified in more than 45% of all patients. The most commonly affected genes were ALS2, DAO, SETX and SPG11, an infrequent cause of ALS in Europeans. We also confirmed a significant association between ATXN1 intermediate repeats and increased disease risk. Damaging variants in major ALS genes C9orf72, SOD1, TARDBP and FUS were however either absent or rare in Maltese ALS patients. Overall, our study underscores a population that is an outlier within Europe and one that represents a high percentage of genetically explained cases.


Assuntos
Esclerose Lateral Amiotrófica , Predisposição Genética para Doença , Humanos , Predisposição Genética para Doença/genética , Estudos de Associação Genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/epidemiologia , Malta/epidemiologia , Fenótipo , Proteína C9orf72/genética , Superóxido Dismutase-1/genética , Mutação/genética , DNA Helicases/genética , RNA Helicases/genética , Enzimas Multifuncionais/genética , Proteínas/genética
5.
Neuroscience ; 491: 32-42, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314252

RESUMO

Increasing evidence points to the involvement of cell types other than motor neurons in both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the predominant motor neuron disease in adults and infants, respectively. The contribution of glia to ALS pathophysiology is well documented. Studies have since focused on evaluating the contribution of glia in SMA. Here, we made use of the Drosophila model to ask whether the survival motor neuron (Smn) protein, the causative factor for SMA, is required selectively in glia. We show that the specific loss of Smn function in glia during development reduced survival to adulthood but did not affect motoric performance or neuromuscular junction (NMJ) morphology in flies. In contrast, gain rather than loss of ALS-linked TDP-43, FUS or C9orf72 function in glia induced significant defects in motor behaviour in addition to reduced survival. Furthermore, glia-specific gain of TDP-43 function caused both NMJ defects and muscle atrophy. Smn together with Gemins 2-8 and Unrip, form the Smn complex which is indispensable for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). We show that glial-selective perturbation of Smn complex components or disruption of key snRNP biogenesis factors pICln and Tgs1, induce deleterious effects on adult fly viability but, similar to Smn reduction, had no negative effect on neuromuscular function. Our findings suggest that the role of Smn in snRNP biogenesis as part of the Smn complex is required in glia for the survival of the organism, underscoring the importance of glial cells in SMA disease formation.


Assuntos
Atrofia Muscular Espinal , Envelhecimento , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Neurônios Motores/fisiologia , Neuroglia/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
6.
Neurol Res ; 44(7): 571-582, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34986754

RESUMO

Coronavirus disease (COVID-19) arising from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection has caused a worldwide pandemic, mainly owing to its highly virulent nature stemming from a very strong and highly efficacious binding to the angiotensin converting enzyme-2 (ACE2) receptor. As the pandemic developed, increasing numbers of COVID-19 patients with neurological manifestations were reported, strongly suggesting a causal relationship. Indeed, direct invasion of SARS-CoV-2 viral particles into the brain can occur through the cribriform plate via olfactory nerves, passage through a damaged blood-brain-barrier, or via haematogenic infiltration of infected leukocytes. Neurological complications range from potentially fatal encephalopathy and stroke, to the onset of headaches and dizziness, which despite their apparent innocuous presentation may still imply a more sinister pathology. Here, we summarize the most recent knowledge on the neurological presentations typically being associated with COVID-19, whilst providing potential pathophysiological mechanisms. The latter are centered upon hypoxic brain injury, generation of a cytokine storm with attendant immune-mediated damage, and a prothrombotic state. A better understanding of both the neuroinvasive properties of SARS-CoV-2 and the neurological complications of COVID-19 will be important to improve patient outcomes.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Acidente Vascular Cerebral , COVID-19/complicações , Humanos , Doenças do Sistema Nervoso/etiologia , Pandemias , SARS-CoV-2 , Acidente Vascular Cerebral/etiologia
7.
Eur J Hum Genet ; 30(7): 856-859, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34616013

RESUMO

Amyotrophic lateral sclerosis (ALS) is frequently caused by mutations in the SOD1 gene. Here, we report the first SOD1 variant in Malta, an archipelago of three inhabited islands in southern Europe. We describe a patient with a sporadic form of ALS living on the island of Gozo in which the heterozygous SOD1 c.272A>C; p.(Asp91Ala) variant was detected. The patient had a late onset (79 years), sensory impairments and rapid disease progression culminating in respiratory failure. ALS has not yet developed in any of the three additional family members in which the D91A variant was identified. None of the healthy controls from the Maltese population were found to carry this variant. This report underscores the high prevalence of the D91A variant in Europe, despite the presence of a North-South gradient in its frequency, and confirms that this variant can be associated with dominant cases in Mediterranean countries.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Europa (Continente) , Heterozigoto , Humanos , Mutação , Superóxido Dismutase-1/genética
8.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799979

RESUMO

The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-ß (Aß), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer's disease (AD) and Parkinson's disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aß42 and α-syn monomers to self-assemble into larger ß-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Membranas Mitocondriais/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Phaeophyceae/química , alfa-Sinucleína/toxicidade , Peptídeos beta-Amiloides/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Membranas Mitocondriais/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Alga Marinha/química , alfa-Sinucleína/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-33821701

RESUMO

Objective: Amyotrophic lateral sclerosis (ALS) is a mostly sporadic neurodegenerative disease. The role of environmental factors has been extensively investigated but associations remain controversial. Considering that a substantial proportion of adult life is spent at work, identifying occupations and work-related exposures is considered an effective way to detect factors that increase ALS risk. This process may be further facilitated in population isolates due to environmental and genetic homogeneity. Our study investigated occupations and occupational exposures potentially associated with ALS risk in the isolated island population of Malta, using a case-control study design. Methods: Patients with ALS and randomly identified matched controls (1:1) were recruited throughout a four-year window, from 2017 through 2020. Data on educational level, residence, main occupation, smoking, and alcohol history were collected. Results: We found that compared to controls (44.4%), a higher percentage (73.7%) of ALS patients reported a blue-collar job as their main occupation (OR 2.04, 95% CI 1.2-3.72; p = 0.0072). Through regression analysis, craft and related trades occupations such as carpentry and construction (ISCO-08 major group 7), were found to be positively associated with ALS, with patients in this occupational category found to be more prone to develop bulbar-onset ALS (p = 0.0297). Overall, patients with ALS reported a significantly higher exposure to work-related strenuous physical activity (OR 2.35, 95% CI 1.53-3.59; p = 0.0002). Conclusion: Our findings suggest that manual workers particularly those working in the carpentry and construction industries have an increased ALS risk, possibly due to a history of intense or sustained physical activity.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Exposição Ocupacional , Adulto , Esclerose Lateral Amiotrófica/epidemiologia , Estudos de Casos e Controles , Humanos , Malta , Exposição Ocupacional/efeitos adversos , Ocupações , Fatores de Risco
10.
Neural Regen Res ; 16(11): 2225-2226, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33818503
11.
Eur J Hum Genet ; 29(4): 604-614, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414559

RESUMO

Genetic isolates are compelling tools for mapping genes of inherited disorders. The archipelago of Malta, a sovereign microstate in the south of Europe is home to a geographically and culturally isolated population. Here, we investigate the epidemiology and genetic profile of Maltese patients with amyotrophic lateral sclerosis (ALS), identified throughout a 2-year window. Cases were largely male (66.7%) with a predominant spinal onset of symptoms (70.8%). Disease onset occurred around mid-age (median age: 64 years, men; 59.5 years, female); 12.5% had familial ALS (fALS). Annual incidence rate was 2.48 (95% CI 1.59-3.68) per 100,000 person-years. Male-to-female incidence ratio was 1.93:1. Prevalence was 3.44 (95% CI 2.01-5.52) cases per 100,000 inhabitants on 31st December 2018. Whole-genome sequencing allowed us to determine rare DNA variants that change the protein-coding sequence of ALS-associated genes. Interestingly, the Maltese ALS patient cohort was found to be negative for deleterious variants in C9orf72, SOD1, TARDBP or FUS genes, which are the most commonly mutated ALS genes globally. Nonetheless, ALS-associated repeat expansions were identified in ATXN2 and NIPA1. Variants predicted to be damaging were also detected in ALS2, DAO, DCTN1, ERBB4, SETX, SCFD1 and SPG11. A total of 40% of patients with sporadic ALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene, whilst the genetic cause of two thirds of fALS cases could not be pinpointed to known ALS genes or risk loci. This warrants further studies to elucidate novel genes that cause ALS in this unique population isolate.


Assuntos
Esclerose Lateral Amiotrófica/genética , Loci Gênicos , Mutação , Isolamento Reprodutivo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Feminino , Frequência do Gene , Humanos , Masculino , Malta , Pessoa de Meia-Idade , Prevalência , Fatores Sexuais
12.
Chem Phys Lipids ; 234: 105010, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227292

RESUMO

Human islet amyloid polypeptide (hIAPP), otherwise known as amylin, is a 37-residue peptide hormone which is reported to be a common factor in protein misfolding disorders such as type-2 diabetes mellitus, Alzheimer's disease and Parkinson's disease, due to deposition of insoluble hIAPP amyloid in the pancreas and brain. Multiple studies point to the importance of the peptide's interaction with biological membranes and the cytotoxicity of hIAPP species. Here, we discuss the aggregation pathways of hIAPP amyloid fibril formation and focus on the complex interplay between membrane-mediated assembly of hIAPP and the associated mechanisms of membrane damage caused by the peptide species. Mitochondrial membranes, which are unique in their lipid composition, are proposed as prime targets for the early intracellular formation of hIAPP toxic entities. We suggest that future studies should include more physiologically-relevant and in-cell studies to allow a more accurate model of in vivo interactions. Finally, we underscore an urgent need for developing effective therapeutic strategies aimed at hindering hIAPP-phospholipid interactions.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Lipídeos/química , Deficiências na Proteostase/metabolismo , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Agregados Proteicos , Conformação Proteica
13.
Sci Rep ; 10(1): 17733, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082392

RESUMO

Studies on the amyloidogenic N-terminal domain of the E. coli HypF protein (HypF-N) have contributed significantly to a detailed understanding of the pathogenic mechanisms in neurodegenerative diseases characterised by the formation of misfolded oligomers, by proteins such as amyloid-ß, α-synuclein and tau. Given that both cell membranes and mitochondria are increasingly recognised as key targets of oligomer toxicity, we investigated the damaging effects of aggregates of HypF-N on mitochondrial membranes. Essentially, we found that HypF-N oligomers characterised by high surface hydrophobicity (type A) were able to trigger a robust permeabilisation of mito-mimetic liposomes possessing cardiolipin-rich membranes and dysfunction of isolated mitochondria, as demonstrated by a combination of mitochondrial shrinking, lowering of mitochondrial membrane potential and cytochrome c release. Furthermore, using single-channel electrophysiology recordings we obtained evidence that the type A aggregates induced currents reflecting formation of ion-conducting pores in mito-mimetic planar phospholipid bilayers, with multi-level conductances ranging in the hundreds of pS at negative membrane voltages. Conversely, HypF-N oligomers with low surface hydrophobicity (type B) could not permeabilise or porate mitochondrial membranes. These results suggest an inherent toxicity of membrane-active aggregates of amyloid-forming proteins to mitochondria, and that targeting of oligomer-mitochondrial membrane interactions might therefore afford protection against such damage.


Assuntos
Amiloide/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cardiolipinas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Potencial da Membrana Mitocondrial , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
14.
Biochim Biophys Acta Biomembr ; 1862(2): 183064, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521630

RESUMO

Misfolding and aggregate formation by the tau protein has been closely related with neurotoxicity in a large group of human neurodegenerative disorders, which includes Alzheimer's disease. Here, we investigate the membrane-active properties of tau oligomers on mitochondrial membranes, using minimalist in vitro model systems. Thus, exposure of isolated mitochondria to oligomeric tau evoked a disruption of mitochondrial membrane integrity, as evidenced by a combination of organelle swelling, efflux of cytochrome c and loss of the mitochondrial membrane potential. Tau-induced mitochondrial dysfunction occurred independently of the mitochondrial permeability transition (mPT) pore complex. Notably, mitochondria were rescued by pre-incubation with 10-N-nonyl acridine orange (NAO), a molecule that specifically binds cardiolipin (CL), the signature phospholipid of mitochondrial membranes. Additionally, NAO prevented direct binding of tau oligomers to isolated mitochondria. At the same time, tau proteins exhibited high affinity to CL-enriched membranes, whilst permeabilisation of lipid vesicles also strongly correlated with CL content. Intriguingly, using single-channel electrophysiology, we could demonstrate the formation of non-selective ion-conducting tau nanopores exhibiting multilevel conductances in mito-mimetic bilayers. Taken together, the data presented here advances a scenario in which toxic cytosolic entities of tau protein would target mitochondrial organelles by associating with their CL-rich membrane domains, leading to membrane poration and compromised mitochondrial structural integrity.


Assuntos
Cardiolipinas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Proteínas tau/farmacologia , Humanos , Membranas Mitocondriais/metabolismo , Nanoporos , Permeabilidade/efeitos dos fármacos , Ligação Proteica , Multimerização Proteica
15.
Sci Rep ; 9(1): 18666, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822699

RESUMO

The predominant motor neuron disease in infants and adults is spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), respectively. SMA is caused by insufficient levels of the Survival Motor Neuron (SMN) protein, which operates as part of the multiprotein SMN complex that includes the DEAD-box RNA helicase Gemin3/DDX20/DP103. C9orf72, SOD1, TDP-43 and FUS are ranked as the four major genes causing familial ALS. Accumulating evidence has revealed a surprising molecular overlap between SMA and ALS. Here, we ask the question of whether Drosophila can also be exploited to study shared pathogenic pathways. Focusing on motor behaviour, muscle mass and survival, we show that disruption of either TBPH/TDP-43 or Caz/FUS enhance defects associated with Gemin3 loss-of-function. Gemin3-associated neuromuscular junction overgrowth was however suppressed. Sod1 depletion had a modifying effect in late adulthood. We also show that Gemin3 self-interacts and Gem3ΔN, a helicase domain deletion mutant, retains the ability to interact with its wild-type counterpart. Importantly, mutant:wild-type dimers are favoured more than wild-type:wild-type dimers. In addition to reinforcing the link between SMA and ALS, further exploration of mechanistic overlaps is now possible in a genetically tractable model organism. Notably, Gemin3 can be elevated to a candidate for modifying motor neuron degeneration.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Superóxido Dismutase/metabolismo , Fator de Transcrição TFIID/metabolismo , Alelos , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , RNA Helicases DEAD-box/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Voo Animal , Genótipo , Humanos , Masculino , Fenótipo , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Fator de Transcrição TFIID/genética
16.
ACS Chem Neurosci ; 10(8): 3815-3829, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31356747

RESUMO

Aggregation of the amyloid-forming α-synuclein (αS) protein is closely associated with the etiology of Parkinson's disease (PD), the most common motor neurodegenerative disorder. Many studies have shown that soluble aggregation intermediates of αS, termed oligomers, permeabilize a variety of phospholipid membranes; thus, membrane disruption may represent a key pathogenic mechanism of αS toxicity. Given the centrality of mitochondrial dysfunction in PD, we therefore probed the formation of ion-permeable pores by αS oligomers in planar lipid bilayers reflecting the complex phospholipid composition of mitochondrial membranes. Using single-channel electrophysiology, we recorded distinct multilevel conductances (100-400 pS) with stepwise current transitions, typical of protein-bound nanopores, in mitochondrial-like membranes. Crucially, we observed that the presence of cardiolipin (CL), the signature phospholipid of mitochondrial membranes, enhanced αS-lipid interaction and the membrane pore-forming activity of αS oligomers. Further, preincubation of isolated mitochondria with a CL-specific dye protected against αS oligomer-induced mitochondrial swelling and release of cytochrome c. Hence, we favor a scenario in which αS oligomers directly porate a local lipid environment rich in CL, for instance outer mitochondrial contact sites or the inner mitochondrial membrane, to induce mitochondrial dysfunction. Pharmacological modulation of αS pore complex formation might thus preserve mitochondrial membrane integrity and alleviate mitochondrial dysfunction in PD.


Assuntos
Cardiolipinas/farmacologia , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , alfa-Sinucleína/metabolismo , Transporte Biológico , Humanos , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Permeabilidade
17.
Sci Rep ; 9(1): 6152, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30992471

RESUMO

Aspirin is a widely used anti-inflammatory and antithrombotic drug also known in recent years for its promising chemopreventive antineoplastic properties, thought to be mediated in part by its ability to induce apoptotic cell death. However, the full range of mechanisms underlying aspirin's cancer-preventive properties is still elusive. In this study, we observed that aspirin impaired both the synthesis and transport of acetyl-coenzyme A (acetyl-CoA) into the mitochondria of manganese superoxide dismutase (MnSOD)-deficient Saccharomyces cerevisiae EG110 yeast cells, but not of the wild-type cells, grown aerobically in ethanol medium. This occurred at both the gene level, as indicated by microarray and qRT-PCR analyses, and at the protein level as indicated by enzyme assays. These results show that in redox-compromised MnSOD-deficient yeast cells, but not in wild-type cells, aspirin starves the mitochondria of acetyl-CoA and likely causes energy failure linked to mitochondrial damage, resulting in cell death. Since acetyl-CoA is one of the least-studied targets of aspirin in terms of the latter's propensity to prevent cancer, this work may provide further mechanistic insight into aspirin's chemopreventive behavior with respect to early stage cancer cells, which tend to have downregulated MnSOD and are also redox-compromised.


Assuntos
Acetilcoenzima A/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Fibrinolíticos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Vias Biossintéticas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Superóxido Dismutase/metabolismo
18.
EMBO Mol Med ; 10(1): 32-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29208638

RESUMO

Alzheimer's disease is a devastating neurodegenerative disease eventually leading to dementia. An effective treatment does not yet exist. Here we show that oral application of the compound anle138b restores hippocampal synaptic and transcriptional plasticity as well as spatial memory in a mouse model for Alzheimer's disease, when given orally before or after the onset of pathology. At the mechanistic level, we provide evidence that anle138b blocks the activity of conducting Aß pores without changing the membrane embedded Aß-oligomer structure. In conclusion, our data suggest that anle138b is a novel and promising compound to treat AD-related pathology that should be investigated further.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Benzodioxóis/uso terapêutico , Hipocampo/efeitos dos fármacos , Pirazóis/uso terapêutico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/genética , Animais , Benzodioxóis/farmacologia , Modelos Animais de Doenças , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal/efeitos dos fármacos , Fenótipo , Pirazóis/farmacologia , Memória Espacial/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
19.
FEBS Lett ; 591(21): 3600-3614, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28949413

RESUMO

The Spinal Muscular Atrophy disease protein Survival Motor Neuron (SMN) operates as part of a multiprotein complex whose components also include Gemins 2-8 and Unrip. The fruit fly Drosophila melanogaster is thought to have a slightly smaller SMN complex comprised of SMN, Gemin2/3/5 and, possibly, Unrip. Based upon in vivo interaction methods, we have identified novel interacting partners of the Drosophila SMN complex with homologies to Gemin4/6/7/8. The Gemin4 and Gemin8 orthologues are required for neuromuscular function and survival. The Gemin6/7/Unrip module can be recruited via the SMN-associated Gemin8, hence mirroring the human SMN complex architecture. Our findings lead us to propose that an elaborate SMN complex that is typical in metazoans is also present in Drosophila.


Assuntos
Proteínas do Complexo SMN/metabolismo , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Humanos , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas do Complexo SMN/genética
20.
Front Mol Biosci ; 4: 41, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642865

RESUMO

Spinal Muscular Atrophy (SMA) is a neuromuscular disorder that results from decreased levels of the survival motor neuron (SMN) protein. SMN is part of a multiprotein complex that also includes Gemins 2-8 and Unrip. The SMN-Gemins complex cooperates with the protein arginine methyltransferase 5 (PRMT5) complex, whose constituents include WD45, PRMT5 and pICln. Both complexes function as molecular chaperones, interacting with and assisting in the assembly of an Sm protein core onto small nuclear RNAs (snRNAs) to generate small nuclear ribonucleoproteins (snRNPs), which are the operating components of the spliceosome. Molecular and structural studies have refined our knowledge of the key events taking place within the crowded environment of cells and the numerous precautions undertaken to ensure the faithful assembly of snRNPs. Nonetheless, it remains unclear whether a loss of chaperoning in snRNP assembly, considered as a "housekeeping" activity, is responsible for the selective neuromuscular phenotype in SMA. This review thus shines light on in vivo studies that point toward disturbances in snRNP assembly and the consequential transcriptome abnormalities as the primary drivers of the progressive neuromuscular degeneration underpinning the disease. Disruption of U1 snRNP or snRNP assembly factors other than SMN induces phenotypes that mirror aspects of SMN deficiency, and splicing defects, described in numerous SMA models, can lead to a DNA damage and stress response that compromises the survival of the motor system. Restoring the correct chaperoning of snRNP assembly is therefore predicted to enhance the benefit of SMA therapeutic modalities based on augmenting SMN expression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA