RESUMO
BACKGROUND: Maintaining a proper supply of soluble histones throughout the cell cycle is important to ensure chromatin and genome stability. Following their synthesis, histones undergo a series of maturation steps to prepare them for deposition onto chromatin. RESULTS: Here, we identify the lysine demethylase JMJD1B as a novel player in the maturation cascade that contributes to regulate histone provision. We find that depletion of JMJD1B increases the protein levels of the histone chaperone tNASP leading to an accumulation of newly synthesized histones H3 and H4 at early steps of the histone maturation cascade, which perturbs chromatin assembly. Furthermore, we find a high rate of JMJD1B mutations in cancer patients, and a correlation with genomic instability. CONCLUSIONS: Our data support a role for JMJD1B in fine-tuning histone supply to maintain genome integrity, opening novel avenues for cancer therapeutics.
Assuntos
Instabilidade Genômica , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Processamento de Proteína Pós-Traducional , Células HeLa , Código das Histonas , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , MutaçãoRESUMO
Newly synthesized histones H3 and H4 undergo a cascade of maturation steps to achieve proper folding and to establish post-translational modifications prior to chromatin deposition. Acetylation of H4 on lysines 5 and 12 by the HAT1 acetyltransferase is observed late in the histone maturation cascade. A key question is to understand how to establish and regulate the distinct timing of sequential modifications and their biological significance. Here, we perform proteomic analysis of the newly synthesized histone H4 complex at the earliest time point in the cascade. In addition to known binding partners Hsp90 and Hsp70, we also identify for the first time two subunits of the histone acetyltransferase inhibitor complex (INHAT): PP32 and SET/TAF-Iß. We show that both proteins function to prevent HAT1-mediated H4 acetylation in vitro. When PP32 and SET/TAF-Iß protein levels are down-regulated in vivo, we detect hyperacetylation on lysines 5 and 12 and other H4 lysine residues. Notably, aberrantly acetylated H4 is less stable and this reduces the interaction with Hsp90. As a consequence, PP32 and SET/TAF-Iß depleted cells show an S-phase arrest. Our data demonstrate a novel function of PP32 and SET/TAF-Iß and provide new insight into the mechanisms regulating acetylation of newly synthesized histone H4.
Assuntos
Histona Acetiltransferases/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Western Blotting , Proteínas de Ligação a DNA , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Lisina/genética , Lisina/metabolismo , Espectrometria de Massas , Proteínas Nucleares , Ligação Proteica , Proteômica , Interferência de RNA , Proteínas de Ligação a RNA , Fatores de Transcrição/genéticaRESUMO
The CENP-T/-W histone fold complex, as an integral part of the inner kinetochore, is essential for building a proper kinetochore at the centromere in order to direct chromosome segregation during mitosis. Notably, CENP-T/-W is not inherited at centromeres, and new deposition is absolutely required at each cell cycle for kinetochore function. However, the mechanisms underlying this new deposition of CENP-T/-W at centromeres are unclear. Here, we found that CENP-T deposition at centromeres is uncoupled from DNA synthesis. We identified Spt16 and SSRP1, subunits of the H2A-H2B histone chaperone facilitates chromatin transcription (FACT), as CENP-W binding partners through a proteomic screen. We found that the C-terminal region of Spt16 binds specifically to the histone fold region of CENP-T/-W. Furthermore, depletion of Spt16 impairs CENP-T and CENP-W deposition at endogenous centromeres, and site-directed targeting of Spt16 alone is sufficient to ensure local de novo CENP-T accumulation. We propose a model in which the FACT chaperone stabilizes the soluble CENP-T/-W complex in the cell and promotes dynamics of exchange, enabling CENP-T/-W deposition at centromeres.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Chaperonas de Histonas/metabolismo , Cinetocoros/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centrômero/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Proteínas de Grupo de Alta Mobilidade/genética , Humanos , Ligação Proteica , Domínios Proteicos , Dobramento de Proteína , Proteômica , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição/genéticaRESUMO
BACKGROUND: Breast cancer is a heterogeneous disease with different molecular subtypes that have varying responses to therapy. An ongoing challenge in breast cancer research is to distinguish high-risk patients from good prognosis patients. This is particularly difficult in the low-grade, ER-positive luminal A tumors, where robust diagnostic tools to aid clinical treatment decisions are lacking. Recent data implicating chromatin regulators in cancer initiation and progression offers a promising avenue to develop new tools to help guide clinical decisions. METHODS: Here we exploit a published transcriptome dataset and an independent validation cohort to correlate the mRNA expression of selected chromatin regulators with respect to the four intrinsic breast cancer molecular subtypes. We then perform univariate and multivariate analyses to compare the prognostic value of a panel of chromatin regulators to Ki67, a currently utilized proliferation marker. RESULTS: Unsupervised hierarchical clustering revealed a gene cluster containing several histone chaperones and histone variants highly-expressed in the proliferative subtypes (basal-like, HER2-positive, luminal B) but not in the luminal A subtype. Several chromatin regulators, including the histone chaperones CAF-1 (subunits p150 and p60), ASF1b, and HJURP, and the centromeric histone variant CENP-A, associated with local and metastatic relapse and poor patient outcome. Importantly, we find that HJURP can discriminate favorable and unfavorable outcome within the luminal A subtype, outperforming the currently utilized proliferation marker Ki67, as an independent prognostic marker for luminal A patients. CONCLUSIONS: The integration of chromatin regulators as clinical biomarkers, in particular the histone chaperone HJURP, will help guide patient substratification and treatment options for low-risk luminal A breast carcinoma patients.
Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Autoantígenos/metabolismo , Neoplasias da Mama/classificação , Neoplasias da Mama/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Centromérica A , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Análise por Conglomerados , Estudos de Coortes , Proteínas de Ligação a DNA/genética , Progressão da Doença , Intervalo Livre de Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Componente 2 do Complexo de Manutenção de Minicromossomo/metabolismo , Análise Multivariada , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resultado do TratamentoRESUMO
Correct chromosome segregation requires a unique chromatin environment at centromeres and in their vicinity. Here, we address how the deposition of canonical H2A and H2A.Z histone variants is controlled at pericentric heterochromatin (PHC). Whereas in euchromatin newly synthesized H2A and H2A.Z are deposited throughout the cell cycle, we reveal two discrete waves of deposition at PHC - during mid to late S phase in a replication-dependent manner for H2A and during G1 phase for H2A.Z. This G1 cell cycle restriction is lost when heterochromatin features are altered, leading to the accumulation of H2A.Z at the domain. Interestingly, compromising PHC integrity also impacts upon neighboring centric chromatin, increasing the amount of centromeric CENP-A without changing the timing of its deposition. We conclude that the higher-order chromatin structure at the pericentric domain influences dynamics at the nucleosomal level within centromeric chromatin. The two different modes of rearrangement of the PHC during the cell cycle provide distinct opportunities to replenish one or the other H2A variant, highlighting PHC integrity as a potential signal to regulate the deposition timing and stoichiometry of histone variants at the centromere.
Assuntos
Ciclo Celular , Histonas/metabolismo , Células 3T3 , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Centrômero/genética , Proteína Centromérica A , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Replicação do DNA , Heterocromatina , Histonas/genética , Camundongos , Complexos Multiproteicos/metabolismoRESUMO
OBJECTIVE: To determine in a guinea pig model the factors of invasiveness of a bipolar electrode implanted in the horizontal semicircular canal (HSC) and to evaluate the consequences on hearing of electrical stimulation of the ampullary nerve. DESIGN: Sixteen guinea pigs divided into four groups underwent surgical opening of the HSC of one ear as follows: control (group 1), cyanoacrylate glue application on the HSC opening (group 2), electrode implantation with cyanoacrylate glue on the HSC opening (group 3), and electrode implantation with electrical stimulation (1 hr/day) for 9 days (group 4). Auditory brainstem responses were recorded before and after surgery and after electrical stimulation. The effectiveness of electrical stimulation in producing a horizontal vestibulo-ocular reflex was evaluated by recording eye movement with video-oculography. RESULTS: Group 1 animals showed hearing loss, and in group 2, sealing the HSC opening with cyanoacrylate glue preserved the hearing thresholds. After electrode implantation, seven of the eight animals showed hearing loss compared with preoperative values. Electrical stimulation did not induce additional hearing loss. CONCLUSION: Electrode implantation at the canal level entailed a risk of hearing loss in an animal model, but electrical stimulation of the horizontal ampullary nerve did not further alter hearing function.
Assuntos
Terapia por Estimulação Elétrica/métodos , Eletrodos Implantados , Perda Auditiva/prevenção & controle , Canais Semicirculares/fisiologia , Doenças Vestibulares/terapia , Nervo Vestibular/fisiologia , Animais , Limiar Auditivo/fisiologia , Cianoacrilatos , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Movimentos Oculares/fisiologia , Cobaias , Audição/fisiologia , Masculino , Complicações Pós-Operatórias/prevenção & controle , Reflexo Vestíbulo-Ocular/fisiologia , Canais Semicirculares/inervação , Doenças Vestibulares/cirurgiaRESUMO
Proper genome packaging requires coordination of both DNA and histone metabolism. While histone gene transcription and RNA processing adequately provide for scheduled needs, how histone supply adjusts to unexpected changes in demand remains unknown. Here, we reveal that the histone chaperone nuclear autoantigenic sperm protein (NASP) protects a reservoir of soluble histones H3-H4. The importance of NASP is revealed upon histone overload, engagement of the reservoir during acute replication stress, and perturbation of Asf1 activity. The reservoir can be fine-tuned, increasing or decreasing depending on the level of NASP. Our data suggest that NASP does so by balancing the activity of the heat shock proteins Hsc70 and Hsp90 to direct H3-H4 for degradation by chaperone-mediated autophagy. These insights into NASP function and the existence of a tunable reservoir in mammalian cells demonstrate that contingency is integrated into the histone supply chain to respond to unexpected changes in demand.
Assuntos
Autoantígenos/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Autofagia , Células HEK293 , Células HeLa , Humanos , Solubilidade , Células Tumorais CultivadasRESUMO
Establishment of a proper chromatin landscape is central to genome function. Here, we explain H3 variant distribution by specific targeting and dynamics of deposition involving the CAF-1 and HIRA histone chaperones. Impairing replicative H3.1 incorporation via CAF-1 enables an alternative H3.3 deposition at replication sites via HIRA. Conversely, the H3.3 incorporation throughout the cell cycle via HIRA cannot be replaced by H3.1. ChIP-seq analyses reveal correlation between HIRA-dependent H3.3 accumulation and RNA pol II at transcription sites and specific regulatory elements, further supported by their biochemical association. The HIRA complex shows unique DNA binding properties, and depletion of HIRA increases DNA sensitivity to nucleases. We propose that protective nucleosome gap filling of naked DNA by HIRA leads to a broad distribution of H3.3, and HIRA association with Pol II ensures local H3.3 enrichment at specific sites. We discuss the importance of this H3.3 deposition as a salvage pathway to maintain chromatin integrity.
Assuntos
Histonas/metabolismo , Nucleossomos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Replicação do DNA , Desoxirribonucleases/metabolismo , Células HeLa , Chaperonas de Histonas/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismoRESUMO
HP1 enrichment at pericentric heterochromatin is considered important for centromere function. Although HP1 binding to H3K9me3 can explain its accumulation at pericentric heterochromatin, how it is initially targeted there remains unclear. Here, in mouse cells, we reveal the presence of long nuclear noncoding transcripts corresponding to major satellite repeats at the periphery of pericentric heterochromatin. Furthermore, we find that major transcripts in the forward orientation specifically associate with SUMO-modified HP1 proteins. We identified this modification as SUMO-1 and mapped it in the hinge domain of HP1α. Notably, the hinge domain and its SUMOylation proved critical to promote the initial targeting of HP1α to pericentric domains using de novo localization assays, whereas they are dispensable for maintenance of HP1 domains. We propose that SUMO-HP1, through a specific association with major forward transcript, is guided at the pericentric heterochromatin domain to seed further HP1 localization.
Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Heterocromatina/metabolismo , Sumoilação , Animais , Centrômero/metabolismo , Homólogo 5 da Proteína Cromobox , Camundongos , Estrutura Terciária de Proteína , RNA , Sequências Repetitivas de Ácido NucleicoRESUMO
Centromeric protein A (CENP-A) is the epigenetic mark of centromeres. CENP-A replenishment is necessary in each cell cycle to compensate for the dilution associated to DNA replication, but how this is achieved mechanistically is largely unknown. We have developed an assay using Xenopus egg extracts that can recapitulate the spatial and temporal specificity of CENP-A deposition observed in human cells, providing us with a robust in vitro system amenable to molecular dissection. Here we show that this deposition depends on Xenopus Holliday junction-recognizing protein (xHJURP), a member of the HJURP/Scm3 family recently identified in yeast and human cells, further supporting the essential role of these chaperones in CENP-A loading. Despite little sequence homology, human HJURP can substitute for xHJURP. We also report that condensin II, but not condensin I, is required for CENP-A assembly and contributes to retention of centromeric CENP-A nucleosomes both in mitosis and interphase. We propose that the chromatin structure imposed by condensin II at centromeres enables CENP-A incorporation initiated by xHJURP.
Assuntos
Adenosina Trifosfatases/fisiologia , Autoantígenos/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/fisiologia , Complexos Multiproteicos/fisiologia , Proteínas de Xenopus/fisiologia , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Centrômero/metabolismo , Centrômero/ultraestrutura , Proteína Centromérica A , Cromatina/metabolismo , Cromatina/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Chaperonas de Histonas/metabolismo , Chaperonas de Histonas/fisiologia , Humanos , Interfase , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevisRESUMO
Central vestibular neurons receive substantial inputs from the contralateral labyrinth through inhibitory and excitatory brainstem commissural pathways. The functional organization of these pathways was studied by a multi-methodological approach in isolated frog whole brains. Retrogradely labeled vestibular commissural neurons were primarily located in the superior vestibular nucleus in rhombomeres 2/3 and the medial and descending vestibular nucleus in rhombomeres 5-7. Restricted projections to contralateral vestibular areas, without collaterals to other classical vestibular targets, indicate that vestibular commissural neurons form a feedforward push-pull circuitry. Electrical stimulation of the contralateral coplanar semicircular canal nerve evoked in canal-related second-order vestibular neurons (2 degrees VN) commissural IPSPs (approximately 70%) and EPSPs (approximately 30%) with mainly (approximately 70%) disynaptic onset latencies. The dynamics of commissural responses to electrical pulse trains suggests mediation predominantly by tonic vestibular neurons that activate in all tonic 2 degrees VN large-amplitude IPSPs with a reversal potential of -74 mV. In contrast, phasic 2 degrees VN exhibited either nonreversible, small-amplitude IPSPs (approximately 40%) of likely dendritic origin or large-amplitude commissural EPSPs (approximately 60%). IPSPs with disynaptic onset latencies were exclusively GABAergic (mainly GABA(A) receptor-mediated) but not glycinergic, compatible with the presence of GABA-immunopositive (approximately 20%) and the absence of glycine-immunopositive vestibular commissural neurons. In contrast, IPSPs with longer, oligosynaptic onset latencies were GABAergic and glycinergic, indicating that both pharmacological types of local inhibitory neurons were activated by excitatory commissural fibers. Conservation of major morpho-physiological and pharmacological features of the vestibular commissural pathway suggests that this phylogenetically old circuitry plays an essential role for the processing of bilateral angular head acceleration signals in vertebrates.
Assuntos
Lateralidade Funcional/fisiologia , Vias Neurais/fisiologia , Equilíbrio Postural/fisiologia , Rana esculenta/fisiologia , Transmissão Sináptica/fisiologia , Núcleos Vestibulares/fisiologia , Animais , Evolução Biológica , Estimulação Elétrica , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glicina/metabolismo , Movimentos da Cabeça/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Inibição Neural/fisiologia , Vias Neurais/citologia , Neurônios/fisiologia , Filogenia , Rana esculenta/anatomia & histologia , Tempo de Reação/fisiologia , Receptores de GABA-A/metabolismo , Canais Semicirculares/fisiologia , Especificidade da Espécie , Sinapses/fisiologia , Nervo Vestibular/fisiologia , Núcleos Vestibulares/citologia , Ácido gama-Aminobutírico/metabolismoRESUMO
In the last decade, numerous studies have investigated synaptic transmission changes in various auditory nuclei after unilateral cochlear injury. However, few data are available concerning the potential effect of electrical stimulation of the deafferented auditory nerve on the inhibitory neurotransmission in these nuclei. We report here for the first time the effect of chronic electrical stimulation of the deafferented auditory nerve on alpha1 subunit of the glycinergic receptor (GlyRalpha1) and glutamic acid decarboxylase (GAD)67 expression in the central nucleus of inferior colliculus (CIC). Adult rats were unilaterally cochleectomized by intracochlear neomycin sulphate injection. Fifteen days later, the ipsilateral auditory nerve was chronically stimulated either 4, 8 or 22 h daily, for 5 days using intracochlear bipolar electrodes. GlyRalpha1 and GAD67 mRNA and protein were quantified in the CIC using in situ hybridization and immunohistofluorescence methods. Our data showed that as after surgical ablation, GlyRalpha1 and GAD67 expression were strongly decreased in the contralateral CIC after unilateral chemical cochleectomy. Most importantly, these postlesional down-modulations were significantly reversed by chronic electrical stimulation of the deafferented auditory nerve. This recovery, however, did not persist for more than 5 days after the cessation of the deafferented auditory nerve electrical stimulation. Thus, downregulations of GlyRalpha1 and GAD67 may be involved both in the increased excitability observed in the CIC after unilateral deafness and consequently in the tinnitus frequently observed in unilateral adult deaf patients. Electrical stimulation of the deafferented auditory nerve in patients may be a potential new approach for treating tinnitus with unilateral hearing loss.
Assuntos
Percepção Auditiva/fisiologia , Implantes Cocleares , Surdez/terapia , Terapia por Estimulação Elétrica/métodos , Colículos Inferiores/fisiologia , Inibição Neural/fisiologia , Animais , Vias Auditivas/anatomia & histologia , Vias Auditivas/fisiologia , Biomarcadores/metabolismo , Surdez/fisiopatologia , Regulação para Baixo/fisiologia , Lateralidade Funcional/fisiologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Glicina/metabolismo , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Transmissão Sináptica/fisiologia , Fatores de Tempo , Ácido gama-Aminobutírico/metabolismoRESUMO
Small-conductance Ca(2+)-activated potassium (SK) channels are heteromeric complexes of SK alpha-subunits and calmodulin that modulate membrane excitability, are responsible for part of the after-hyperpolarization (AHP) following action potentials, and thus control the firing patterns and excitability of most central neurons. An engineered knockout allele for the SK2 subunit has previously been reported. The hippocampal neurons of these mice lacked the medium latency component of the AHP, but the animals were not described as presenting any overt behavioral phenotype. In this report, we describe a deletion in the 5' region of the Kcnn2 gene encoding the SK2 subunit in the mouse neurological frissonnant (fri) mutant. The frissonnant mutant phenotype is characterized by constant rapid tremor and locomotor instability. It has been suggested, based merely on its phenotype, as a potential model for human Parkinson disease. We used a positional cloning strategy to identify the mutation underlying the frissonnant phenotype. We narrowed the genetic disease interval and identified a 3,441-bp deletion in the Kcnn2 gene, one of the three candidate genes present in the interval. Expression studies showed complete absence of normal Kcnn2 transcripts while some tissue-specific abnormal truncated variants were detected. Intracellular electrophysiological recordings of central vestibular neurons revealed permanent alterations of the AHP and firing behavior that might cause the tremor and associated locomotor deficits. Thus, the fri mutation suggests a new, potentially important physiological role, which had not been described, for the SK2 subunit of small-conductance Ca(2+)-activated potassium channels.
Assuntos
Comportamento Animal/fisiologia , Deleção de Sequência , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética , Canais de Potássio Ativados por Cálcio de Condutância Baixa/fisiologia , Potenciais de Ação , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Mapeamento Cromossômico , Primers do DNA/genética , Fenômenos Eletrofisiológicos , Feminino , Expressão Gênica , Haplótipos , Hibridização In Situ , Fígado/metabolismo , Locomoção/genética , Locomoção/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Mutantes , Dados de Sequência Molecular , Fenótipo , Homologia de Sequência de Aminoácidos , Tremor/genética , Tremor/fisiopatologiaRESUMO
We report the first investigation of whether unilateral labyrinthectomy in adult rats affects the expression of two amino acid transporters, vesicular glutamate transporter 2 (VGLUT2) and vesicular inhibitory amino acid transporter (VIAAT) and of chloride cotransporters (KCC1, KCC2 and NKCC1) in the intact and deafferented medial vestibular nuclei (MVN). In situ hybridization with specific radioactive oligonucleotide probes and immunofluorescent methods were used in normal and unilaterally labyrinthectomized rats at various times following the lesion: 5 h, and 1, 3 and 8 days. In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei contained VGLUT2, VIAAT and KCC2 mRNA. In contrast, no or a very faint labeling was observed with KCC1 and NKCC1 probes. In unilaterally lesioned rats, there was no asymmetry between the two MVN with any of the oligonucleotide probes at any time after the lesion. Similarly, there were no differences in the intensity of MVN labeling between controls and lesioned animals. Finally, no over-expression of the cotransporter KCC1 and NKCC1 was found in ipsilateral or controlateral MVN in lesioned rats at any time. Immunohistochemical experiments gave similar conclusions. Our findings suggest that the recovery of the resting discharge of the deafferented MVN neurons, and consequently the functional compensation of the deficits, are not dependent on changes in the expression of amino acid transporters (VIAAT, VGLUT2), and chloride cotransporters (KCC1, KCC2 and NKCC1) or on their mRNAs.
Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Regulação da Expressão Gênica/fisiologia , Simportadores/imunologia , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/lesões , Sistemas de Transporte de Aminoácidos/genética , Animais , Modelos Animais de Doenças , Masculino , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Simportadores de Cloreto de Sódio-Potássio , Membro 2 da Família 12 de Carreador de Soluto , Simportadores/genética , Fatores de Tempo , Proteína Vesicular 2 de Transporte de Glutamato , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Núcleos Vestibulares/citologia , Cotransportadores de K e Cl-RESUMO
Central vestibular neurons process head movement-related sensory signals over a wide dynamic range. In the isolated frog whole brain, second-order vestibular neurons were identified by monosynaptic responses after electrical stimulation of individual semicircular canal nerve branches. Neurons were classified as tonic or phasic vestibular neurons based on their different discharge patterns in response to positive current steps. With increasing frequency of sinusoidally modulated current injections, up to 100 Hz, there was a concomitant decrease in the impedance of tonic vestibular neurons. Subthreshold responses as well as spike discharge showed classical low-pass filter-like characteristics with corner frequencies ranging from 5 to 20 Hz. In contrast, the impedance of phasic vestibular neurons was relatively constant over a wider range of frequencies or showed a resonance at approximately 40 Hz. Above spike threshold, single spikes of phasic neurons were synchronized with the sinusoidal stimulation between approximately 20 and 50 Hz, thus showing characteristic bandpass filter-like properties. Both the subthreshold resonance and bandpass filter-like discharge pattern depend on the activation of an I(D) potassium conductance. External current or synaptic stimulation that produced impedance increases (i.e., depolarization in tonic or hyperpolarization in phasic neurons) had opposite and complementary effects on the responses of the two types of neurons. Thus, membrane depolarization by current steps or repetitive synaptic excitation amplified synaptic inputs in tonic vestibular neurons and reduced them in phasic neurons. These differential, opposite membrane response properties render the two neuronal types particularly suitable for either integration (tonic neurons) or signal detection (phasic neurons), respectively, and dampens variations of the resting membrane potential in the latter.
Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Rombencéfalo/fisiologia , Canais Semicirculares/fisiologia , Transmissão Sináptica/fisiologia , Vestíbulo do Labirinto/fisiologia , 4-Aminopiridina/farmacologia , Animais , Tronco Encefálico , Impedância Elétrica , Técnicas In Vitro , Canal de Potássio Kv1.1/análise , Potenciais da Membrana/fisiologia , Neurônios/química , Neurônios/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Rana temporaria , Temperatura , Nervo Vestibular/fisiologia , Vestíbulo do Labirinto/citologiaRESUMO
Facial nerve axotomy is a good model for studying neuronal plasticity and regeneration in the peripheral nervous system. In the present study, we investigated the effect of axotomy on the different subunits of GABA(A) and GABA(B) receptors of facial motoneurons. The facial nerve trunk was unilaterally sectioned and operated rats were sacrificed at 1, 3, 8, 30, and 60 days later. mRNAs coding for alpha1, beta2, and gamma2 of GABA(A) receptors and for GABA(1B) and GABA(B2) receptors were down-regulated by axotomy. This decrease began as soon as 1 or 3 days after axotomy, and the minimum was 8 days post-lesion; the mRNA levels remained lower than normal at day post-lesion 60. The abundance of mRNAs coding for the three other alpha2, beta1, and beta3 facial subunits of GABA(A) receptors and for the pre-synaptic GABA(B1A) subunit remained unchanged during the period 1-8 days post-lesion. Immunohistochemistry using specific antibodies against alpha1, gamma2 subunits of GABA(A) and against GABA(B2) subunits confirmed this down-regulation. Colchicine treatment and blockade of action potential by tetrodotoxin significantly decreased GABA(A)alpha1 immunoreactivity in the axotomized facial nucleus after 7 days. Finally, muscle destruction by cardiotoxin or facial palsy induced by botulinum toxin failed to change GABA(A)alpha1 subunit expression. Our data demonstrate that axotomy strongly reduced the amounts of alpha1, beta2, and gamma2 subunits of GABA(A) receptors and B(1B) and B(2) subunits of GABA(B) receptors in the axotomized facial motoneurons. The loss of GABA(A)alpha1 subunit was most probably induced by both the loss of trophic factors transported from the periphery and a positive injury signal. It also seems to be dependent on activity disruption.
Assuntos
Regulação para Baixo/fisiologia , Nervo Facial/citologia , Neurônios Motores/metabolismo , Receptores de GABA/metabolismo , Animais , Autorradiografia , Transporte Axonal/efeitos dos fármacos , Axotomia , Toxinas Botulínicas/farmacologia , Contagem de Células/métodos , Proteínas Cardiotóxicas de Elapídeos/farmacologia , Colchicina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Lateralidade Funcional , Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptores de GABA/classificação , Receptores de GABA/genética , Tetrodotoxina/farmacologia , Fatores de TempoRESUMO
In the last decade, numerous studies have investigated molecular changes in excitatory glutamatergic receptors in axotomized motoneurons, but few data are available concerning the modulation of inhibitory amino acid receptors. We report here the effect of axotomy on the expression of glycine receptors, gephyrin, vesicular inhibitory amino acid transporter (VIAAT) and synapsin I in rat facial motor neurons as demonstrated by in situ hybridization and immunohistochemistry. The facial nerve trunk was sectioned unilaterally and rats were killed 1, 3, 8, 30 or 60 days after surgery. We investigated the mechanisms underlying the changes in production of these proteins following axotomy by perfusing the facial nerve with colchicine or tetrodotoxin, and injecting cardiotoxin or botulinum toxin independently and unilaterally into the whisker pads of normal rats. Animals were killed 8 days later and processed for immunohistochemistry. The abundance of GlyR subunits and gephyrin fell sharply in the axotomized facial nucleus. This decrease began 1 day after axotomy and was lowest at 8 days, with protein levels returning to normal by day 60. Abnormal synapsin immunolabelling was also observed between days 8 and 60 after axotomy but we detected no change in VIAAT immunoreactivity. The effect of colchicine was similar to, but weaker than, that of axotomy. In contrast, tetrodotoxin, cardiotoxin and botulinum toxin had no significant effect. Thus, axotomy-induced changes probably resulted from a loss of trophic factor transported from the periphery or a positive injury signal, or both. They did not seem to depend on the disruption of activity.
Assuntos
Proteínas de Transporte/metabolismo , Nervo Facial/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Glicina/metabolismo , Animais , Axotomia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Regulação da Expressão Gênica/fisiologia , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Neurônios Motores/metabolismo , Subunidades Proteicas/biossíntese , Subunidades Proteicas/genética , Ratos , Ratos Long-Evans , Receptores de Glicina/biossíntese , Receptores de Glicina/genéticaRESUMO
We investigated whether the production of the sixteen subunits of the GABA(A) receptors and of the different variants of GABA Breceptors are modulated in rat medial vestibular nuclei (MVN) following unilateral labyrinthectomy. Specific alpha1-6, beta1-3, gamma1-3 and delta GABA(A) and GABA(B) B1 and B2receptor radioactive oligonucleotides were used for in situ hybridization to probe sections of rat vestibular nuclei. Specific antibodies against alpha1, beta2, beta3 and gamma2 subunits of GABA(A) receptors and against GABA( B)receptors were also used to detect a potential protein expression modulation. No asymmetry was observed by autoradiography in the intact and deafferented MVN at any time (5 h to 8 days) following the lesion and for any of the oligonucleotide probes used. Also, no difference in the alpha1, beta2, beta3 and gamma2 of the GABA(A) and in the GABA(B) receptor immunohistochemical signal could be detected between the intact and deafferented vestibular nuclei at any time following the lesion. Our data suggest that GABA(A) and GABA Breceptor density changes most probably were not involved in the early stage of the vestibular compensation process, i.e., in the restoration of a normal resting discharge of the deafferented vestibular neurons and consequently in the recovery of a normal posture and eye position.
Assuntos
Plasticidade Neuronal/fisiologia , Receptores de GABA-A/metabolismo , Receptores de GABA-B/metabolismo , Nervo Vestibular/metabolismo , Núcleos Vestibulares/metabolismo , Vestíbulo do Labirinto/lesões , Adaptação Fisiológica/fisiologia , Animais , Especificidade de Anticorpos/fisiologia , Denervação , Orelha Interna/fisiologia , Orelha Interna/cirurgia , Imunofluorescência , Lateralidade Funcional/fisiologia , Hibridização In Situ , Masculino , Subunidades Proteicas/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans , Receptores de GABA-A/genética , Receptores de GABA-B/genética , Nervo Vestibular/fisiopatologia , Núcleos Vestibulares/fisiopatologiaRESUMO
We investigated whether the expression of glycinergic receptor (GLYR) subunits of gephyrin and of their mRNAs in the medial vestibular nuclei are affected following unilateral labyrinthectomy. Specific radioactive oligonucleotide probes recognizing the sequences encoding alpha1-3 and ss subunits of GLYR and the anchoring protein gephyrin were used to probe sections of vestibular nuclei. Signals in these in situ hybridization experiments were detected with film or by emulsion photography. Animals were killed at various times following the lesion: 5 h, 1, 3, 8, 30 and 60 days. Specific monoclonal GLYR and gephyrin antibodies were also used to determine GLYR and gephyrin immunoreactivity in control and operated rats (5 h, 1, 3 and 8 days post-lesion). In normal animals, several brainstem regions including the lateral, medial, superior and inferior vestibular nuclei contained mRNAs for gephyrin and the alpha1 and beta subunits of GLYR, and expressed the GLYR and gephyrin polypeptides. In unilaterally labyrinthectomized rats, no asymmetry was detected on autoradiographs between the two medial vestibular nuclei with any of the oligonucleotide probes used, or at any time following the lesion. No difference in the immunofluorescence staining was observed between the intact and deafferented medial vestibular nuclei of lesioned animals or between the vestibular nuclei of lesioned and controls rats. Thus, deafferentation of the vestibular nuclei did not affect the expression of gephyrin, of the various GLYR subunits, or of their mRNAs in the deafferented and intact medial vestibular nuclei. It is therefore unlikely that GLYR and gephyrin modulation contribute significantly to the recovery of the resting discharge of the deafferented medial vestibular neurons and consequently to the restoration of a normal posture and eye position.