Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
J Pers Med ; 14(3)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38541055

RESUMO

BACKGROUND: this prospective observational study aims to assess serum levels of glial fibrillary acidic protein (GFAP), s100b, and total Tau in long-COVID patients, exploring correlations with symptoms, cognitive decline, mental health, and quality of life. METHODS: Long-COVID patients visiting our outpatient clinic (February 2021-December 2022) were screened alongside age- and sex-matched controls. GFAP, s100b, and total Tau in serum were measured with ELISA. Cognitive function, depression, anxiety, post-traumatic stress disorder, and quality of life were evaluated using MoCA, HADS (depression and anxiety), IES-R, and SF-36, respectively. RESULTS: Sixty-five long-COVID patients and 20 controls were included. GFAP levels were significantly higher in long-COVID patients (p = 0.031), though not correlating with the presence of long-COVID symptoms. S100b and total Tau showed no significant differences between patients and controls. Nervous system-related symptoms were reported in 47% of patients. High rates of cognitive decline (65.9%), depression (32.2%), anxiety (47.5%), and post-traumatic stress disorder (44.1%) were observed. Over 80% of the study population scored below normative cutoffs for SF-36, indicating a significant impact on quality of life. CONCLUSIONS: in this long-COVID cohort with substantial psychological and cognitive symptoms, GFAP levels were elevated compared to controls, though not correlating with the presence of long-COVID symptoms.

2.
Hormones (Athens) ; 23(1): 59-67, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37996650

RESUMO

OBJECTIVE: To investigate hormonal status in patients with long-COVID and explore the interrelationship between hormone levels and long-COVID symptoms. DESIGN: Prospective observational study. PARTICIPANTS: Patients who visited our long-COVID outpatients' clinic due to long-COVID symptoms from February 2021 to December 2022. MEASUREMENTS: Total triiodothyronine, free thyroxine, thyrotropin, thyroglobulin, anti-thyroperoxidase, and antithyroglobulin autoantibodies were measured for thyroid assessment. Other hormones measured were growth hormone, insulin-like growth factor 1 (IGF-1), adrenocorticotropic hormone (ACTH), serum cortisol, dehydroepiandrosterone sulfate (DHEA-S), total testosterone, plasma insulin, and C-peptide. Blood glucose and glycosylated hemoglobin were also measured. To assess adrenal reserve, an ACTH stimulation test was performed. The fatigue assessment scale (FAS) was used to evaluate fatigue severity. RESULTS: Eighty-four adult patients were included. Overall, 40.5% of the patients had at least one endocrine disorder. These included prediabetes (21.4%), low DHEA-S (21.4%), subclinical hypothyroidism (3.6%), non-specific thyroid function abnormality (7.1%), thyroid autoimmunity (7.1%), low testosterone in males (6.6%), and low IGF-1 (3.6%). All patients had normal adrenal reserve. Long-COVID-19 symptoms were present in all patients and the most commonly reported symptom was fatigue (89.3%). The FAS score was higher than normal (≥ 22) in 42.8% of patients. There were no associations between patients' symptoms and hormone levels. Diabetic patients reported confusion (p = 0.020) and hair loss (p = 0.040) more often than non-diabetics. CONCLUSIONS: The evaluation of endocrine function 3 months after a positive SARS-CoV2 test revealed only subclinical syndromes. The vast majority of patients reported mainly fatigue, among other symptoms, which were unrelated, however, to endocrine function.


Assuntos
COVID-19 , Fator de Crescimento Insulin-Like I , Adulto , Humanos , Masculino , Hormônio Adrenocorticotrópico , Desidroepiandrosterona , Fadiga , Hidrocortisona , Síndrome de COVID-19 Pós-Aguda , Estudos Prospectivos , RNA Viral , SARS-CoV-2 , Testosterona , Hormônios Tireóideos , Tireotropina , Feminino
3.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958814

RESUMO

Severe COVID-19 is related to hyperinflammation and multiple organ injury, including respiratory failure, thus requiring intensive care unit (ICU) admission. Galectin-3, a carbohydrate-binding protein exhibiting pleiotropic effects, has been previously recognized to participate in inflammation, the immune response to infections and fibrosis. The aim of this study was to evaluate the relationship between galectin-3 and the clinical severity of COVID-19, as well as assess the prognostic accuracy of galectin-3 for the probability of ICU mortality. The study included 235 COVID-19 patients with active disease, treated in two different Greek hospitals in total. Our results showed that median galectin-3 serum levels on admission were significantly increased in critical COVID-19 patients (7.2 ng/mL), as compared to the median levels of patients with less severe disease (2.9 ng/mL, p = 0.003). Galectin-3 levels of the non-survivors hospitalized in the ICU were significantly higher than those of the survivors (median 9.1 ng/mL versus 5.8 ng/mL, p = 0.001). The prognostic accuracy of galectin-3 for the probability of ICU mortality was studied with a receiver operating characteristic (ROC) curve and a multivariate analysis further demonstrated that galectin-3 concentration at hospital admission could be assumed as an independent risk factor associated with ICU mortality. Our results were validated with galectin-3 measurements in a second patient cohort from a different Greek university hospital. Our results, apart from strongly confirming and advancing previous knowledge with two patient cohorts, explore the possibility of predicting ICU mortality, which could provide useful information to clinicians. Therefore, galectin-3 seems to establish its involvement in the prognosis of hospitalized COVID-19 patients, suggesting that it could serve as a promising biomarker in critical COVID-19.


Assuntos
COVID-19 , Humanos , Estado Terminal , Galectina 3 , Hospitalização , Inflamação , Unidades de Terapia Intensiva , Estudos Retrospectivos , SARS-CoV-2
4.
J Pers Med ; 13(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37763119

RESUMO

Since the beginning of the pandemic, both COVID-19-associated coagulopathy biomarkers and a plethora of endothelial biomarkers have been proposed and tested as prognostic tools of severity and mortality prediction. As the pandemic is gradually being controlled, attention is now focusing on the long-term sequelae of COVID-19. In the present study, we investigated the role of endothelial activation/dysfunction in long COVID syndrome. This observational study included 68 consecutive long COVID patients and a healthy age and sex-matched control group. In both groups, we measured 13 endothelial biomarkers. Moreover, in the long COVID patients, we evaluated fatigue and dyspnea severity, lung diffusion capacity (DLCO), and the 6-min walk (6MWT) test as measures of functional capacity. Our results showed that markers of endothelial activation/dysfunction were higher in long COVID patients, and that soluble intracellular adhesion molecule 1 (sICAM-1) and soluble vascular adhesion molecule 1 (sVCAM-1) negatively correlated with lung diffusion and functional capacity (sICAM-1 vs. DLCO, r = -0.306, p = 0.018; vs. 6MWT, r = -0.263, p = 0.044; and sVCAM-1 vs. DLCO, r= -0.346, p = 0.008; vs. 6MWT, r = -0.504, p < 0.0001). In conclusion, evaluating endothelial biomarkers alongside clinical tests might yield more specific insights into the pathophysiological mechanisms of long COVID manifestations.

5.
Biomedicines ; 11(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37509441

RESUMO

Sepsis is associated with dysregulated cortisol secretion, leading to abnormal levels of cortisol in the blood. In the early stages of the condition, cortisol levels are typically elevated due to increased secretion from the adrenal glands. However, as the disease progresses, cortisol levels may decline due to impaired adrenal function, leading to relative adrenal insufficiency. The latter is thought to be caused by a combination of factors, including impaired adrenal function, decreased production of corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) by the hypothalamus and pituitary gland, and increased breakdown of cortisol. The dysregulation of cortisol secretion in sepsis is thought to contribute to the pathophysiology of the disease by impairing the body's ability to mount an appropriate inflammatory response. Given the dysregulation of cortisol secretion and corticosteroid receptors in sepsis, there has been considerable interest in the use of steroids as a treatment. However, clinical trials have yielded mixed results and corticosteroid use in sepsis remains controversial. In this review, we will discuss the changes in cortisol secretion and corticosteroid receptors in critically ill patients with sepsis/septic shock. We will also make special note of COVID-19 patients, who presented a recent challenge for ICU management, and explore the scope for corticosteroid administration in both COVID-19 and non-COVID-19 septic patients.

6.
Int J Mol Sci ; 24(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37373282

RESUMO

Aging negatively affects the endothelium. Endocan (ESM-1), an endothelium-derived soluble proteoglycan, participates in fundamental biological processes of endothelial cells. We aimed to examine the role of endothelial dysfunction and age in poor outcomes in critical illness. ESM-1 levels were measured in the sera of mechanically ventilated critically ill patients, including COVID-19, non-septic, and septic patients. The 3 patient cohorts were divided based on age (≥65 and <65). Critically ill COVID-19 patients had statistically higher ESM-1 levels compared to critically ill septic and non-septic patients. Only in critically ill septic patients were ESM-1 levels higher in older compared to younger patients. Finally, the age-subgrouped patients were further subdivided based on intensive care unit (ICU) outcome. ESM-1 levels were similar in COVID-19 survivors and non-survivors, irrespective of age. Interestingly, only for the younger critically ill septic patients, non-survivors had higher ESM-1 levels compared to survivors. In the non-septic survivors and non-survivors, ESM-1 levels remained unaltered in the younger patients and tended to be higher in the elderly. Even though endocan has been recognized as an important prognostic biomarker in critically ill patients with sepsis, in our patient cohort, increased age, as well as the extent of endothelial dysfunction, seemed to affect its prognostic ability.


Assuntos
COVID-19 , Sepse , Doenças Vasculares , Humanos , Idoso , Estado Terminal , Células Endoteliais , Biomarcadores , Unidades de Terapia Intensiva
7.
Med Sci (Basel) ; 11(2)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367740

RESUMO

Hypoxia is characterized as one of the main consequences of sepsis, which is recognized as the leading cause of death in intensive care unit (ICU) patients. In this study, we aimed to examine whether the expression levels of genes regulated under hypoxia could be utilized as novel biomarkers for sepsis prognosis in ICU patients. Whole blood expression levels of hypoxia-inducible factor-1α (HIF1A), interferon-stimulated gene 15 (ISG15), hexokinase 2 (HK2), lactate dehydrogenase (LDHA), heme oxygenase-1 (HMOX1), erythropoietin (EPO), and the vascular endothelial growth factor A (VEGFA) were measured on ICU admission in 46 critically ill, initially non-septic patients. The patients were subsequently divided into two groups, based on the development of sepsis and septic shock (n = 25) or lack thereof (n = 21). HMOX1 mRNA expression was increased in patients who developed sepsis/septic shock compared to the non-septic group (p < 0.0001). The ROC curve, multivariate logistic regression, and Kaplan-Meier analysis demonstrated that HMOX1 expression could be utilized for sepsis and septic shock development probability. Overall, our results indicate that HMOX1 mRNA levels have the potential to be a valuable predictive factor for the prognosis of sepsis and septic shock in ICU patients.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/diagnóstico , Choque Séptico/genética , Prognóstico , Fator A de Crescimento do Endotélio Vascular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Unidades de Terapia Intensiva , Sepse/diagnóstico , Sepse/genética
8.
Clin Med Res ; 21(1): 6-13, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37130784

RESUMO

Objective: The mineralocorticoid receptor (MR) has two ligands, aldosterone and cortisol. Hydroxysteroid 11-beta dehydrogenase (HSD11B) isoenzymes regulate which ligand will bind to MR. In this study we aimed to evaluate the expression of the MR and the HSD11B isozymes in peripheral polymorphonuclear cells (PMNs) in critical illness for a 13-day period.Design: Prospective studySetting: One multi-disciplinary intensive care unit (ICU)Participants: Forty-two critically ill patientsMethods: Messenger RNA (mRNA) expression of MR, HSD11B1, and HSD11B2, aldosterone levels, and plasma renin activity (PRA) were measured in 42 patients on ICU admission and on days 4, 8, and 13. Twenty-five age and sex-matched healthy subjects were used as controls.Results: Compared to healthy controls, MR expression in critically ill patients was lower during the entire study period. HSD11B1 expression was also lower, while HSD11B2 expression was higher. In patients, PRA, aldosterone, the aldosterone:renin ratio, and cortisol remained unaltered during the study period.Conclusion: Our results suggest that, in our cohort of critically ill patients, local endogenous cortisol availability is diminished, pointing towards glucocorticoid resistance. Aldosterone probably occupies the MR, raising the possibility that PMNs might be useful to study to gain insights into MR functionality during pathological states.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Aldosterona , Receptores de Mineralocorticoides , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Estado Terminal , Regulação para Baixo , Hidrocortisona/metabolismo , Hidroxiesteroides , Isoenzimas/genética , Isoenzimas/metabolismo , Estudos Prospectivos , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Renina/genética , Renina/metabolismo , Regulação para Cima
9.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175942

RESUMO

The pulmonary endothelium is a highly regulated organ that performs a wide range of functions under physiological and pathological conditions. Since endothelial dysfunction has been demonstrated to play a direct role in sepsis and acute respiratory distress syndrome, its role in COVID-19 has also been extensively investigated. Indeed, apart from the COVID-19-associated coagulopathy biomarkers, new biomarkers were recognised early during the pandemic, including markers of endothelial cell activation or injury. We systematically searched the literature up to 10 March 2023 for studies examining the association between acute and long COVID-19 severity and outcomes and endothelial biomarkers.


Assuntos
COVID-19 , Doenças Vasculares , Humanos , COVID-19/complicações , Síndrome de COVID-19 Pós-Aguda , Doenças Vasculares/patologia , Pulmão/patologia , Biomarcadores
10.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203657

RESUMO

Sepsis is an inflammatory disorder caused by the host's dysfunctional response to infection. Septic patients present diverse clinical characteristics, and in the recent years, it has been the main cause of death in intensive care units (ICU). Aquaporins, membrane proteins with a role in water transportation, have been reported to participate in numerous biological processes. Their role in sepsis progression has been studied extensively. This review aims to examine recent literature on aquaporin expression and regulation in clinical sepsis, as well as established experimental models of sepsis. We will present how sepsis affects aquaporin expression at the molecular and protein level. Moreover, we will delve into the importance of aquaporin regulation at transcriptional, post-transcriptional, translational, and post-translational levels in sepsis by presenting data on aquaporin regulation by non-coding RNAs and selected chemical molecules. Finally, we will focus on the importance of aquaporin single-nucleotide polymorphisms in the setting of sepsis.


Assuntos
Aquaporinas , Sepse , Humanos , Sepse/genética , Aquaporinas/genética , Unidades de Terapia Intensiva , Proteínas de Membrana , Polimorfismo de Nucleotídeo Único
11.
J Crit Care Med (Targu Mures) ; 8(4): 242-248, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36474609

RESUMO

Introduction: Post intensive care syndrome (PICS) affects an increasing number of critical illness survivors and their families, with serious physical and psychological sequelae. Since little is known about the burden of critical illness on ICU survivor families, we conducted a prospective observational study aiming to assess this, and investigate correlations of the patients' psychometric and health-related quality of life (HRQOL) scores with family burden. Materials and Methods: Twenty-nine patients were evaluated in the presence of a family member. Participants were assessed with the use of validated scales for anxiety, depression, post-traumatic stress disorder, cognitive decline, and the family burden scale (FBS). Results: High burden was present in 27.6% of family members. Statistically significant correlations were observed between the FBS score and trait anxiety, depression, and the physical and psychological components of HRQOL. Conclusions: Our results suggest that family burden following critical illness is common, suggesting that its assessment should be incorporated in the evaluation of PICS-family in large observational studies.

12.
Shock ; 58(6): 507-513, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36548642

RESUMO

ABSTRACT: Background : COVID-19 disease severity markers include mostly molecules related to not only tissue perfusion, inflammation, and thrombosis, but also biomarkers of neural injury. Clinical and basic research has demonstrated that SARS-COV-2 affects the central nervous system. The aims of the present study were to investigate the role of neural injury biomarkers and to compare them with inflammatory markers in their predictive ability of mortality. Methods : We conducted a prospective observational study in critically ill patients with COVID-19 and in a cohort of patients with moderate/severe disease. S100b, neuron-specific enolase (NSE), and inflammatory markers, including soluble urokinase plasminogen activator receptor (suPAR), were measured on intensive care unit or ward admission, respectively. Statistical comparisons between patient groups were performed for all biomarkers under investigation. Correlations between different biomarkers were tested with Spearman correlation coefficient. Receiver operating characteristic curves were plotted using mortality as the classification variable and the biomarker levels on admission as the prognostic variables. Results : A total of 70 patients with COVID-19 were included in the final analysis. Of all studied biomarkers, s100b had the best predictive ability for death in the intensive care unit, with an area under the curve of 0.73 (0.61-0.83), P = 0.0003. S100b levels correlated with NSE, interleukin (IL)-8, and IL-10 (0.27 < rs < 0.37, P < 0.05), and tended to correlate with suPAR ( rs = 0.26, P = 0.05), but not with the vasopressor dose ( P = 0.62). Conclusion : Among the investigated biomarkers, s100b demonstrated the best predictive ability for death in COVID-19 patients. The overall biomarker profile of the patients implies direct involvement of the nervous system by the novel coronavirus.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Fosfopiruvato Hidratase , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Subunidade beta da Proteína Ligante de Cálcio S100 , Humanos , Biomarcadores/sangue , COVID-19/sangue , COVID-19/complicações , Prognóstico , Estudos Prospectivos , Receptores de Ativador de Plasminogênio Tipo Uroquinase/sangue , SARS-CoV-2 , Estado Terminal , Doenças do Sistema Nervoso/sangue , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/virologia , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Fosfopiruvato Hidratase/sangue
13.
J Pers Med ; 12(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36294842

RESUMO

The unprecedented scale of the current SARS-CoV-2/COVID-19 pandemic has led to an extensive-yet fragmented-assessment of its endocrine repercussions; in many reports, the endocrine aspects of COVID-19 are lumped together in intensive care unit (ICU) patients and non-ICU patients. In this brief review, we aimed to present endocrine alterations in ICU-hospitalized patients with COVID-19. There are tangible endocrine disturbances that may provide fertile ground for COVID-19, such as preexisting diabetes. Other endocrine disturbances accompany the disease and more particularly its severe forms. Up to the time of writing, no isolated robust endocrine/hormonal biomarkers for the prognosis of COVID-19 have been presented. Among those which may be easily available are admission glycemia, thyroid hormones, and maybe (OH)25-vitamin D3. Their overlap among patients with severe and less severe forms of COVID-19 may be considerable, so their levels may be indicative only. We have shown that insulin-like growth factor 1 may have prognostic value, but this is not a routine measurement. Possibly, as our current knowledge is expanding, the inclusion of selected routine endocrine/hormonal measurements into artificial intelligence/machine learning models may provide further information.

14.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142499

RESUMO

Aquaporin-1 (AQP1), a water channel, and the hypoxia-inducible factor 1α (HIF1A) are implicated in acute lung injury responses, modulating among others pulmonary vascular leakage. We hypothesized that the AQP1 and HIF1A systems interact, affecting mRNA, protein levels and function of AQP1 in human pulmonary microvascular endothelial cells (HPMECs) exposed to lipopolysaccharide (LPS). Moreover, the role of AQP1 in apoptosis and wound healing progression was examined. Both AQP1 mRNA and protein expression levels were higher in HPMECs exposed to LPS compared to untreated HPMECs. However, in the LPS-exposed HIF1A-silenced cells, the mRNA and protein expression levels of AQP1 remained unaltered. In the permeability experiments, a statistically significant volume increase was observed at the 360 s time-point in the LPS-exposed HPMECs, while LPS-exposed HIF1A-silenced HPMECs did not exhibit cell swelling, implying a dysfunctional AQP1. AQP1 did not seem to affect cell apoptosis yet could interfere with endothelial migration and/or proliferation. Based on our results, it seems that HIF1A silencing negatively affects AQP1 mRNA and protein expression, as well as AQP1 function, in the setting of lung injury.


Assuntos
Aquaporina 1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lipopolissacarídeos , Lesão Pulmonar , Células Endoteliais/metabolismo , Humanos , Hipóxia , Pulmão/metabolismo , Lesão Pulmonar/induzido quimicamente , RNA Mensageiro/genética
15.
Int J Mol Sci ; 23(14)2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35887265

RESUMO

The pathogenesis of sepsis involves complex interactions and a systemic inflammatory response leading eventually to multiorgan failure. Autotaxin (ATX, ENPP2) is a secreted glycoprotein largely responsible for the extracellular production of lysophosphatidic acid (LPA), which exerts multiple effects in almost all cell types through its at least six G-protein-coupled LPA receptors (LPARs). Here, we investigated a possible role of the ATX/LPA axis in sepsis in an animal model of endotoxemia as well as in septic patients. Mice with 50% reduced serum ATX levels showed improved survival upon lipopolysaccharide (LPS) stimulation compared to their littermate controls. Similarly, mice bearing the inducible inactivation of ATX and presenting with >70% decreased ATX levels were even more protected against LPS-induced endotoxemia; however, no significant effects were observed upon the chronic and systemic transgenic overexpression of ATX. Moreover, the genetic deletion of LPA receptors 1 and 2 did not significantly affect the severity of the modelled disease, suggesting that alternative receptors may mediate LPA effects upon sepsis. In translation, ATX levels were found to be elevated in the sera of critically ill patients with sepsis in comparison with their baseline levels upon ICU admission. Therefore, the results indicate a role for ATX in LPS-induced sepsis and suggest possible therapeutic benefits of pharmacologically targeting ATX in severe, systemic inflammatory disorders.


Assuntos
Endotoxemia , Receptores de Ácidos Lisofosfatídicos , Animais , Modelos Animais de Doenças , Inflamação , Lipopolissacarídeos/toxicidade , Lisofosfolipídeos/metabolismo , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo
16.
Antioxidants (Basel) ; 11(7)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35883791

RESUMO

Heme-oxygenase (HO)-1 is a cytoprotective enzyme with strong antioxidant and anti-apoptotic properties and previous reports have also emphasized the antiviral properties of HO-1, either directly or via induction of interferons. To investigate the potential role of HO-1 in patients with coronavirus disease 2019 (COVID-19), the present study assessed changes in HO-1 expression in whole blood and tissue samples. Upregulation of HO-1 protein was observed in lung, liver, and skin tissue independently of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presence. A significant increase of blood HO-1 mRNA levels was observed in critically ill COVID-19 patients compared to those in severe COVID-19 patients and healthy controls. This increase was accompanied by significantly elevated levels of serum ferritin and bilirubin in critically ill compared to patients with severe disease. Further grouping of patients in survivors and non-survivors revealed a significant increase of blood HO-1 mRNA levels in the later. Receiver operating characteristic (ROC) analysis for prediction of ICU admission and mortality yielded an AUC of 0.705 (p = 0.016) and 0.789 (p = 0.007) respectively indicating that HO-1 increase is associated with poor COVID-19 progression and outcome. The increase in HO-1 expression observed in critically ill COVID-19 patients could serve as a mechanism to counteract increased heme levels driving coagulation and thrombosis or as an induced protective mechanism.

17.
J Inflamm Res ; 15: 3501-3546, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734098

RESUMO

Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.

18.
Diagnostics (Basel) ; 12(5)2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35626416

RESUMO

In the last years, biomarkers of infection, such as the soluble urokinase plasminogen activator receptor (suPAR), have been extensively studied as potential diagnostic and prognostic biomarkers in the intensive care unit (ICU). In this study, we investigated whether this biomarker can be used in COVID-19 and non-COVID-19 septic patients for mortality prediction. Serum suPAR levels were measured in 79 non-COVID-19 critically ill patients upon sepsis (within 6 h), and on admission in 95 COVID-19 patients (66 critical and 29 moderate/severe). The non-COVID-19 septic patients were matched for age, sex, and disease severity, while the site of infection was the respiratory system. On admission, COVID-19 patients presented with higher suPAR levels, compared to non-COVID-19 septic patients (p < 0.01). More importantly, suPAR measured upon sepsis could not differentiate survivors from non-survivors (p > 0.05), as opposed to suPAR measured on admission in COVID-19 survivors and non-survivors (p < 0.0001). By the generated ROC curve, the prognostic value of suPAR in COVID-19 was 0.81, at a cut-off value of 6.3 ng/mL (p < 0.0001). suPAR measured early (within 24 h) after hospital admission seems like a specific and sensitive mortality risk predictor in COVID-19 patients. On the contrary, suPAR measured at sepsis diagnosis in non-COVID-19 critically ill patients, does not seem to be a prognostic factor of mortality.

20.
J Pers Med ; 12(2)2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35207659

RESUMO

A limited number of coronavirus disease-19 (COVID-19) cases may require treatment in an intensive care unit (ICU). Arterial blood lactate levels are routinely measured in the ICU to estimate disease severity, predict poor outcomes, and monitor therapeutic handlings. A number of studies have suggested that, simultaneously with lactate, pyruvate should also be measured, providing augmented prognostic ability, and a better understanding of the underlying metabolic alterations in ICU patients. Hence, the aim of the present study was to elucidate the relationship between lactate levels and the lactate-to-pyruvate (LP) ratio with the clinical outcome in mechanically ventilated COVID-19 patients. Lactate and pyruvate were serially measured during the first 24 h of ICU stay. A group of ICU non-COVID-19 patients was used as a comparison group. The majority of COVID-19 patients (82.5%) had normal lactate levels and a normal LP ratio on ICU admission (normal metabolic pattern). A small, yet significant, percentage of patients had either elevated lactate levels or a high LP ratio (abnormal metabolic pattern); these patients exhibited a significantly higher risk of ICU mortality compared to the patients with a normal metabolic pattern (72.7% vs. 34.6%, p = 0.04). In our critically ill COVID-19 patients, elevated lactate levels or high LP ratios on admission to the ICU could be associated with poor clinical outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA