Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Microencapsul ; 41(1): 66-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38096025

RESUMO

AIM: To evaluate the effect of different wall material (WM) matrices followed by homogenisation to encapsulate chia seed oil (CSO) using freeze drying technology. METHODS: CSO was encapsulated using three ratios (100/0, 50/50, and 100/0) of two WM matrices: MTS/WPC (modified tapioca starch-whey protein concentrate) and MD/WPC (maltodextrin-whey protein concentrate). The evaluation included encapsulation efficiency (EE), oxidative stability, and α-linolenic acid (ALA) retention. Homogenised microcapsules (-H) were then assessed for storage and thermal stability, along with cumulative oil release. RESULTS: The MD-WPC-H 50/50 microcapsules had superior EE (97.32%), higher ALA retention (60.2%), storage stability (up to 30 days), higher thermal stability (up to 700 °C), and desirable oil release in simulated condition. CONCLUSION: Selecting suitable WM and homogenisation is key for improving EE, storage, thermal stability, and targeted release. The CSO microcapsule can serve as a functional ingredient to improve the quality of diverse food products.


Assuntos
Salvia , Cápsulas , Proteínas do Soro do Leite , Oxirredução
2.
Gene ; 895: 148001, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977314

RESUMO

Demand for maize oil is progressively increasing due to its diverse industrial applications, aside from its primary role in human nutrition and animal feed. Oil content and composition are two crucial determinants of maize oil in the international market. As kernel oil in maize is a complex quantitative trait, improving this trait presents a challenge for plant breeders and biotechnologists. Here, we characterized a set of 292 diverse maize inbreds of both indigenous and exotic origin by exploiting functional polymorphism of the dgat1-2, fatb, ge2, and wri1a genes governing kernel oil in maize. Genotyping using gene-based functional markers revealed a lower frequencies of dgat1-2 (0.15) and fatb (0.12) mutant alleles and a higher frequencies of wild-type alleles (Dgat1-2: 0.85; fatB: 0.88). The favorable wri1a allele was conserved across genotypes, while its wild-type allele (WRI1a) was not detected. In contrast, none of the genotypes possessed the ge2 favorable allele. The frequency of favorable alleles of both dgat1-2 and fatb decreased to 0.03 when considered together. Furthermore, pairwise protein-protein interactions among target gene products were conducted to understand the effect of one protein on another and their responses to kernel oil through functional enrichments. Thus, the identified maize genotypes with dgat1-2, fatb, and wri1a favourable alleles, along with insights gained through the protein-protein association network, serve as prominent and unique genetic resources for high-oil maize breeding programs. This is the first comprehensive report on the functional characterization of diverse genotypes at the molecular and protein levels.


Assuntos
Óleo de Milho , Zea mays , Humanos , Zea mays/genética , Zea mays/metabolismo , Óleo de Milho/genética , Óleo de Milho/metabolismo , Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Melhoramento Vegetal , Marcadores Genéticos , Alelos
3.
Plants (Basel) ; 12(6)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36987087

RESUMO

In the era of global warming, heat stress, particularly at the seedling stage, is a major problem that affects the production and productivity of crops such as mustard that are grown in cooler climates. Nineteen mustard cultivars were exposed to contrasting temperature regimes-20 °C, 30 °C, 40 °C and a variable range of 25-40 °C-and evaluated for changes in physiological and biochemical parameters at the seedling stage to study their role in heat-stress tolerance. Exposure to heat stress showed detrimental effects on seedling growth as revealed by reduced vigor indices, survival percentages, antioxidant activity and proline content. The cultivars were grouped into tolerant, moderately tolerant and susceptible based on the survival percentage and biochemical parameters. All the conventional and three single-zero cultivars were found to be tolerant and moderately tolerant, respectively, while double-zero cultivars were reckoned to be susceptible except for two cultivars. Significant increases in proline content and catalase and peroxidase activities were found associated with thermo-tolerant cultivars. More efficient antioxidant system activity and proline accumulation were noticed in conventional along with three single-zero (PM-21, PM-22, PM-30) and two double-zero (JC-21, JC-33) cultivars that might have provided better protection to them under heat stress than the remaining one single- and nine double-zero cultivars. Tolerant cultivars also resulted in significantly higher values of most of the yield attributing traits. Heat-stress-tolerant cultivars could easily be selected based on the survival percentage, proline and antioxidants at the seedling stage and included as efficient cultivars in breeding programs.

4.
Front Plant Sci ; 13: 1012368, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36275533

RESUMO

Seed coat colour is an important trait in Indian mustard. Breeding for seed coat colour needs precise knowledge of mode of inheritance and markers linked to it. The present study was focussed on genetics and development of functional markers for seed coat colour. F1s (direct and reciprocal) and F2 populations were developed by crossing two contrasting parents for seed coat colour (DRMRIJ-31, brown seeded and RLC-3, yellow seeded). Phenotypic results have shown that the seed coat colour trait was under the influence of maternal effect and controlled by digenic-duplicate gene action. Further, Bju.TT8 homologs of both parents (DRMRIJ-31 and RLC-3) were cloned and sequenced. Sequencing results of Bju.TT8 homologs revealed that in RLC-3, gene Bju.ATT8 had an insertion of 1279bp in the 7th exon; whereas, gene Bju.BTT8 had an SNP (C→T) in the 7th exon. These two mutations were found to be associated with yellow seed coat colour. Using sequence information, functional markers were developed for both Bju.TT8 homologs, validated on F2 population and were found highly reliable with no recombination between the markers and the phenotype. Further, these markers were subjected to a germplasm assembly of Indian mustard, and their allelic combination for the seed coat colour genes has been elucidated. The comparative genomics of TT8 genes revealed high degree of similarity between and across the Brassica species, and the respective diploid progenitors in tetraploid Brassica species are the possible donors of TT8 homologs. This study will help in the marker-assisted breeding for seed coat colour, and aid in understanding seed coat colour genetics more precisely.

5.
Plants (Basel) ; 11(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35807731

RESUMO

Tocopherol is vital for the nutritional value and stability of Indian mustard (Brassica juncea L. Czern and Coss) oil; nonetheless, the lack of information on genetic control is hampering its improvement. In this study, six populations (P1, P2, F1, F2, BC1P1, and BC1P2) of RLC3 × NPJ203 were evaluated in a family block design to evaluate the inheritance pattern, gene effects, and various other genetic parameters of tocopherol content (α, γ, and total), using generation mean analysis. The comparison of direct and reciprocal crosses indicated that the tocopherol content was not influenced by maternal inheritance. Negative directional heterosis showed that ATC, GTC, and TTC are governed by recessive genes. Potence ratio and degree of dominance highlighted an over-dominance type of gene interaction for GTC and TTC, whereas ATC was governed by epistatic interactions. Furthermore, the six-parameter model revealed a duplicate gene action for α-tocopherol content. Broad and narrow sense heritability coupled with genetic advances were high.

6.
J Biotechnol ; 337: 80-89, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34111457

RESUMO

Crop plants have an innate capacity to acclimatize and survive myriad stresses in field conditions. This acclimatization to stress enhances crop stand in field and productivity of plant. Inter alia field crops withstand drought stress (hydropenia) by inducing synthesis or accumulation of osmolytes such as (i) proline and other amino acids, (ii) glycine betaine (GB), (iii) soluble carbohydrates, and (iv) reactive oxygen species (ROS) scavenging system as intrinsic drought antagonizing molecules. Precise in vivo induction of osmolytes and their effect on ROS scavenging system in flax/linseed has not been elucidated. The investigation was carried out to identify a tolerant and susceptible cultivar of flax from a core collection of 53 core accessions and evaluate the role of compatible osmolytes in Linum usitatissimum under hydropenia. We screened eight morphometrically diverse flax genotypes in field under irrigated and un-irrigated condition and classified them as tolerant and susceptible genotypes. Further, we examined the effect of ex-foliar glycine betaine application - a signature molecule involved in drought tolerance, on selected tolerant and susceptible varieties. Our results showed stimulatory impact of glycine betaine on accumulation of ROS scavenging antioxidants, total soluble protein and on its own accumulation. While the ex-foliar application had no inhibitory effect on the growth of plants; accumulation of free proline, amino acids and carbohydrates are inhibited par se in flax. Our findings reveal, flax is a non-accumulator of glycine betaine and exogenous application of glycine betaine enhances its own levels during drought stress.


Assuntos
Secas , Linho , Betaína , Carboidratos , Espécies Reativas de Oxigênio
7.
Front Plant Sci ; 12: 651936, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017349

RESUMO

The response to selection in any crop improvement program depends on the degree of variance and heritability. The objective of the current study was to explain variance and heritability components in Indian mustard Brassica juncea (L). Czern & Coss to recognize promising genotypes for effective breeding. Two hundred and eighty-nine diverse accessions of Indian mustard belonging to four continents were analyzed for yield and yield-related traits (20 traits) over two seasons (2017-2018 and 2018-2019) using an alpha lattice design. The genetic variance was found to be significant (P ≤ 0.01) for the individual and under pooled analysis for all of the evaluated traits, demonstrating the presence of significant genetic variability in the diversity panel, which bids greater opportunities for utilizing these traits in future breeding programs. High heritability combined with high genetic advance as percent of mean and genotypic coefficient of variation was observed for flowering traits, plant height traits, seed size, and seed yield/plant; hence, a better genetic gain is expected upon the selection of these traits over subsequent generations. Both correlation and stepwise regression analysis indicated that the main shoot length, biological yield, total seed yield, plant height up to the first primary branch, seed size, total siliqua count, days to flowering initiation, plant height at maturity, siliquae on the main shoot, main shoot length, and siliqua length were the most significant contributory traits for seed yield/plant. Also, promising genotypes were identified among the diversity panel, which can be utilized as a donor to improve Indian mustard further. These results indicated a greater scope for improving seed yield per plant directly through a selection of genotypes having the parsimonious combination of these nine traits.

8.
3 Biotech ; 10(3): 121, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32123645

RESUMO

Based on C (wild) to T (mutant) transition at amino acid position 1432 bp of lpa1-1 gene, two dominant markers each specific to wild type (LPA1) and mutant (lpa1-1) allele were developed and validated across seven F2 populations. Joint segregation of these markers behaved in co-dominant fashion, clearly distinguishing heterozygote from two other homozygote genotypes. Full length sequence alignment between wild type (LPA2) and mutant (lpa2-1) allele revealed one transition mutation (A to G) and a co-dominant CAPS marker was developed which differentiated all three types of segregants across seven F2 populations. Across populations, segregants with lpa1-1/lpa1-1 (1.77 mg/g) and lpa2-1/lpa2-1 (1.85 mg/g) possessed significantly lower phytic acid compared to LPA1/LPA1 (2.58 mg/g) and LPA2/LPA2 (2.53 mg/g). Inorganic phosphorus was however higher in recessive homozygotes (lpa1-1/lpa1-1: 0.77 mg/g, lpa2-1/lpa2-1: 0.53 mg/g) than the dominant homozygotes (LPA1/LPA1: 0.33 mg/g, LPA2/LPA2: 0.19 mg/g). Overall, homozygous segregants of lpa1-1 and lpa2-1 showed 31% and 27% reduction of phytic acid, respectively. Analysis of phytate and inorganic phosphorous in the maize kernel in these segregating populations confirmed co-segregation of trait and markers specific to lpa1-1 and lpa2-1. This is the first report of the development of breeder-friendly gene-based markers for lpa1-1 and lpa2-1; and it holds great significance for maize biofortification.

9.
Breed Sci ; 66(5): 831-837, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163599

RESUMO

Low erucic acid is a major breeding target to improve the edible oil quality in Brassica juncea. The single nucleotide polymorphism (SNP) in fatty acid elongase 1 (FAE1.1 and FAE1.2) gene was exploited to expedite the breeding program. The paralogs of FAE1 gene were sequenced from low erucic acid genotype Pusa Mustard 30 and SNPs were identified through homologous alignment with sequence downloaded from NCBI GenBank. Two SNPs in FAE1.1 at position 591 and 1265 and one in FAE1.2 at 237 were found polymorphic among low and high erucic acid genotypes. These SNPs either create or change the recognition site of restriction enzymes. Transition of a single nucleotide at position 591 and 1265 in FAE1.1, and at position 237 in FAE1.2, leads to a change in the recognition site of Hpy99I, BglII and MnlI restriction enzymes, respectively. Two CAPS markers for FAE1.1 and one for FAE1.2 were developed to differentiate low and high erucic acid genotypes. The efficiency of these CAPS markers was found 100 per cent when validated in Brassica juncea, and B. nigra genotypes and used in back-cross breeding. These CAPS markers will facilitate in marker-assisted selection for improvement of oil quality in Brassica juncea.

10.
Rev. biol. trop ; 61(4): 1919-1934, oct.-dic. 2013. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-703937

RESUMO

Brassica mustard species represent one of the most important oilseed crops in India, nevertheless, their genetic diversity is barely known. A better understanding on this topic is essential for the proper utilization of genotypes in breeding programmes. We evaluated the genetic diversity among 44 Indian mustard Brassica juncea genotypes including varieties/purelines from different agro-climatic zones of India and few exotic genotypes Australia, Poland and China. For this, we used A and B genome specific SSR markers and phenotypic data on 12 yield and yield contributing traits. Out of the 143 primers tested, 134 reported polymorphism and a total of 355 alleles were amplified. Dendrograms based on Jaccards similarity coefficients and Manhattan dissimilarity coefficients were generated based on an average linkage algorithm UPGMA using marker data and phenotypic data. Genotypes were grouped into four clusters based on genetic distances. Both the clustering patterns based on Jaccards similarity and Manhattan dissimilarity coefficients, independently, discriminated the genotypes effectively as per their pedigree and origin. PCoA revealed that, the grouping of genotypes based on SSR marker data is more convincing than phenotypic data, however, the correlation between phenotypic and genetic distance matrices was observed to be very low r=0.11. Hence, for diversity studies reliability on molecular markers is worth proving and SSR markers are the stronger tools than quantitative traits in discriminating B. juncea genotypes.


Las especies de mostaza del género Brassica representan uno de los cultivos de semillas oleaginosas más importantes en India, sin embargo, su diversidad genética es poco conocida. Para la utilización de genotipos en programas de cultivos resulta esencial un mayor conocimiento sobre este tema. Debido a ello, se evaluó la diversidad genética entre 44 genotipos de mostaza de la India Brassica juncea incluyendo variedades y líneas puras de diferentes zonas agro-climáticas de la India y algunos genotipos exóticos Australia, Polonia y China. Para ello, se utilizaron marcadores SSR específicos del genoma A y B y datos fenotípicos del rendimiento de 12 cosechas y sus características. De los 143 primers evaluados, 134 reportaron polimorfismo y un total de 355 alelos fueron amplificados. Se generaron dendrogramas a partir de los coeficientes de similitud de Jaccard y de disimilitud Manhattan, basados en un algoritmo de vinculación promedio UPGMA. Se utilizaron datos de marcadores genéticos y datos fenotípicos. Los genotipos se agruparon en cuatro grupos basados en las distancias genéticas. Ambos patrones de agrupamiento, tanto los basados en los coeficientes de similitud de Jaccard como los basados en los de disimilitud Manhattan, separaron independientemente los genotipos por su genealogía y origen, de una manera efectiva. El PCoA reveló que la agrupación de genotipos basada en datos de marcadores SSR, es más convincente que los datos fenotípicos, sin embargo, se observó que la correlación entre las matrices de distancia fenotípica y genética resultó muy baja r=0.11. Por lo tanto, para estudios de diversidad basados en marcadores moleculares es necesario realizar más pruebas. Los marcadores SSR constituyen herramientas más eficientes para discriminar entre genotipos de B. juncea, que las características cuantitativas.


Assuntos
Brassica/genética , Variação Genética/genética , Biomarcadores , Brassica/classificação , Primers do DNA/genética , Genótipo , Índia , Repetições de Microssatélites , Fenótipo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Reprodutibilidade dos Testes
11.
Rev Biol Trop ; 61(4): 1919-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24432543

RESUMO

Brassica mustard species represent one of the most important oilseed crops in India, nevertheless, their genetic diversity is barely known. A better understanding on this topic is essential for the proper utilization of genotypes in breeding programmes. We evaluated the genetic diversity among 44 Indian mustard (Brassica juncea) genotypes including varieties/purelines from different agro-climatic zones of India and few exotic genotypes (Australia, Poland and China). For this, we used A and B genome specific SSR markers and phenotypic data on 12 yield and yield contributing traits. Out of the 143 primers tested, 134 reported polymorphism and a total of 355 alleles were amplified. Dendrograms based on Jaccard's similarity coefficients and Manhattan dissimilarity coefficients were generated based on an average linkage algorithm (UPGMA) using marker data and phenotypic data. Genotypes were grouped into four clusters based on genetic distances. Both the clustering patterns based on Jaccard's similarity and Manhattan dissimilarity coefficients, independently, discriminated the genotypes effectively as per their pedigree and origin. PCoA revealed that, the grouping of genotypes based on SSR marker data is more convincing than phenotypic data, however, the correlation between phenotypic and genetic distance matrices was observed to be very low (r = 0.11). Hence, for diversity studies reliability on molecular markers is worth proving and SSR markers are the stronger tools than quantitative traits in discriminating B. juncea genotypes.


Assuntos
Brassica/genética , Variação Genética/genética , Biomarcadores , Brassica/classificação , Primers do DNA/genética , Genótipo , Índia , Repetições de Microssatélites , Fenótipo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA