Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 30(11): 6051-6068, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32577713

RESUMO

In construing meaning, the brain recruits multimodal (conceptual) systems and embodied (modality-specific) mechanisms. Yet, no consensus exists on how crucial the latter are for the inception of semantic distinctions. To address this issue, we combined electroencephalographic (EEG) and intracranial EEG (iEEG) to examine when nouns denoting facial body parts (FBPs) and nonFBPs are discriminated in face-processing and multimodal networks. First, FBP words increased N170 amplitude (a hallmark of early facial processing). Second, they triggered fast (~100 ms) activity boosts within the face-processing network, alongside later (~275 ms) effects in multimodal circuits. Third, iEEG recordings from face-processing hubs allowed decoding ~80% of items before 200 ms, while classification based on multimodal-network activity only surpassed ~70% after 250 ms. Finally, EEG and iEEG connectivity between both networks proved greater in early (0-200 ms) than later (200-400 ms) windows. Collectively, our findings indicate that, at least for some lexico-semantic categories, meaning is construed through fast reenactments of modality-specific experience.


Assuntos
Encéfalo/fisiologia , Compreensão/fisiologia , Idioma , Modelos Neurológicos , Semântica , Adulto , Mapeamento Encefálico/métodos , Eletrocorticografia/métodos , Eletroencefalografia/métodos , Face , Feminino , Humanos , Masculino
3.
Cereb Cortex ; 30(8): 4563-4580, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32219312

RESUMO

At any given moment, we experience a perceptual scene as a single whole and yet we may distinguish a variety of objects within it. This phenomenon instantiates two properties of conscious perception: integration and differentiation. Integration is the property of experiencing a collection of objects as a unitary percept and differentiation is the property of experiencing these objects as distinct from each other. Here, we evaluated the neural information dynamics underlying integration and differentiation of perceptual contents during bistable perception. Participants listened to a sequence of tones (auditory bistable stimuli) experienced either as a single stream (perceptual integration) or as two parallel streams (perceptual differentiation) of sounds. We computed neurophysiological indices of information integration and information differentiation with electroencephalographic and intracranial recordings. When perceptual alternations were endogenously driven, the integrated percept was associated with an increase in neural information integration and a decrease in neural differentiation across frontoparietal regions, whereas the opposite pattern was observed for the differentiated percept. However, when perception was exogenously driven by a change in the sound stream (no bistability), neural oscillatory power distinguished between percepts but information measures did not. We demonstrate that perceptual integration and differentiation can be mapped to theoretically motivated neural information signatures, suggesting a direct relationship between phenomenology and neurophysiology.


Assuntos
Percepção Auditiva/fisiologia , Encéfalo/fisiologia , Estimulação Acústica , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
4.
IEEE Trans Neural Syst Rehabil Eng ; 27(4): 619-629, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30869625

RESUMO

The individual differences approach focuses on the variation of behavioral and neural signatures across subjects. In this context, we searched for intracranial neural markers of performance in three individuals with distinct behavioral patterns (efficient, borderline, and inefficient) in a dual-valence task assessing facial and lexical emotion recognition. First, we performed a preliminary study to replicate well-established evoked responses in relevant brain regions. Then, we examined time series data and network connectivity, combined with multivariate pattern analyses and machine learning, to explore electrophysiological differences in resting-state versus task-related activity across subjects. Next, using the same methodological approach, we assessed the neural decoding of performance for different dimensions of the task. The classification of time series data mirrored the behavioral gradient across subjects for stimulus type but not for valence. However, network-based measures reflected the subjects' hierarchical profiles for both stimulus types and valence. Therefore, this measure serves as a sensitive marker for capturing distributed processes such as emotional valence discrimination, which relies on an extended set of regions. Network measures combined with classification methods may offer useful insights to study single subjects and understand inter-individual performance variability. Promisingly, this approach could eventually be extrapolated to other neuroscientific techniques.


Assuntos
Individualidade , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Adulto , Epilepsia Resistente a Medicamentos/psicologia , Eletroencefalografia , Emoções , Potenciais Evocados/fisiologia , Expressão Facial , Reconhecimento Facial , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação
5.
Front Neurosci ; 11: 411, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769749

RESUMO

Interoception, the monitoring of visceral signals, is often presumed to engage attentional mechanisms specifically devoted to inner bodily sensing. In fact, most standardized interoceptive tasks require directing attention to internal signals. However, most studies in the field have failed to compare attentional modulations between internally- and externally-driven processes, thus probing blind to the specificity of the former. Here we address this issue through a multidimensional approach combining behavioral measures, analyses of event-related potentials and functional connectivity via high-density electroencephalography, and intracranial recordings. In Study 1, 50 healthy volunteers performed a heartbeat detection task as we recorded modulations of the heartbeat-evoked potential (HEP) in three conditions: exteroception, basal interoception (also termed interoceptive accuracy), and post-feedback interoception (sometimes called interoceptive learning). In Study 2, to evaluate whether key interoceptive areas (posterior insula, inferior frontal gyrus, amygdala, and somatosensory cortex) were differentially modulated by externally- and internally-driven processes, we analyzed human intracranial recordings with depth electrodes in these regions. This unique technique provides a very fine grained spatio-temporal resolution compared to other techniques, such as EEG or fMRI. We found that both interoceptive conditions in Study 1 yielded greater HEP amplitudes than the exteroceptive one. In addition, connectivity analysis showed that post-feedback interoception, relative to basal interoception, involved enhanced long-distance connections linking frontal and posterior regions. Moreover, results from Study 2 showed a differentiation between oscillations during basal interoception (broadband: 35-110 Hz) and exteroception (1-35 Hz) in the insula, the amygdala, the somatosensory cortex, and the inferior frontal gyrus. In sum, this work provides convergent evidence for the specificity and dynamics of attentional mechanisms involved in interoception.

6.
Neurosci Conscious ; 2017(1): niw024, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30042834

RESUMO

Consciousness impairments have been described as a cornerstone of epilepsy. Generalized seizures are usually characterized by a complete loss of consciousness, whereas focal seizures have more variable degrees of responsiveness. In addition to these impairments that occur during ictal episodes, alterations of consciousness have also been repeatedly observed between seizures (i.e. during interictal periods). In this opinion article, we review evidence supporting the novel hypothesis that epilepsy produces consciousness impairments which remain present interictally. Then, we discuss therapies aimed to reduce seizure frequency, which may modulate consciousness between epileptic seizures. We conclude with a consideration of relevant pathophysiological mechanisms. In particular, the thalamocortical network seems to be involved in both seizure generation and interictal consciousness impairments, which could inaugurate a promising translational agenda for epilepsy studies.

7.
Brain ; 139(Pt 1): 54-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26608745

RESUMO

A decisive element of moral cognition is the detection of harm and its assessment as intentional or unintentional. Moral cognition engages brain networks supporting mentalizing, intentionality, empathic concern and evaluation. These networks rely on the amygdala as a critical hub, likely through frontotemporal connections indexing stimulus salience. We assessed inferences about perceived harm using a paradigm validated through functional magnetic resonance imaging, eye-tracking and electroencephalogram recordings. During the task, we measured local field potentials in three patients with depth electrodes (n = 115) placed in the amygdala and in several frontal, temporal, and parietal locations. Direct electrophysiological recordings demonstrate that intentional harm induces early activity in the amygdala (<200 ms), which--in turn--predicts intention attribution. The amygdala was the only site that systematically discriminated between critical conditions and predicted their classification of events as intentional. Moreover, connectivity analysis showed that intentional harm induced stronger frontotemporal information sharing at early stages. Results support the 'many roads' view of the amygdala and highlight its role in the rapid encoding of intention and salience--critical components of mentalizing and moral evaluation.


Assuntos
Agressão/fisiologia , Tonsila do Cerebelo/fisiologia , Cognição/fisiologia , Intenção , Adulto , Eletrodos Implantados , Movimentos Oculares/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Princípios Morais , Desempenho Psicomotor/fisiologia , Reprodutibilidade dos Testes , Adulto Jovem
8.
Cereb Cortex ; 25(11): 4490-503, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25899708

RESUMO

Interoception, the perception of our body internal signals, plays a key role in maintaining homeostasis and guiding our behavior. Sometimes, we become aware of our body signals and use them in planning and strategic thinking. Here, we show behavioral and neural dissociations between learning to follow one's own heartbeat and metacognitive awareness of one's performance, in a heartbeat-tapping task performed before and after auditory feedback. The electroencephalography amplitude of the heartbeat-evoked potential in interoceptive learners, that is, participants whose accuracy of tapping to their heartbeat improved after auditory feedback, was higher compared with non-learners. However, an increase in gamma phase synchrony (30-45 Hz) after the heartbeat auditory feedback was present only in those participants showing agreement between objective interoceptive performance and metacognitive awareness. Source localization in a group of participants and direct cortical recordings in a single patient identified a network hub for interoceptive learning in the insular cortex. In summary, interoceptive learning may be mediated by the right insular response to the heartbeat, whereas metacognitive awareness of learning may be mediated by widespread cortical synchronization patterns.


Assuntos
Conscientização/fisiologia , Potenciais Evocados Auditivos/fisiologia , Retroalimentação Sensorial/fisiologia , Frequência Cardíaca/fisiologia , Interocepção/fisiologia , Percepção do Tempo/fisiologia , Estimulação Acústica , Adulto , Análise de Variância , Análise por Conglomerados , Eletrocardiografia , Eletroencefalografia , Epilepsia/patologia , Feminino , Humanos , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA