Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hosp Pediatr ; 12(6): 600-606, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35502605

RESUMO

BACKGROUND: Hospitalized patients are often medically ready for discharge before actual time of discharge. Delays are multifactorial, including medical staff workflow, knowledge, culture, and system issues. Identifying discharge criteria in a nurse-initiated conditional discharge (NICD) order facilitates a nurse-initiated discharge, creates a shared mental model for early discharge readiness, and improves workflow delays. The objective was to increase the percentage of morning discharges from 6% to 11% on the hospitalist intervention team, sustaining 11% for 6 months. METHODS: All patients admitted to a hospitalist service (intervention team) were targeted from July 2018 through March 2020. The primary outcome measure was percentage of morning discharges (6:00 am-12:00 pm). Quality improvement methodology was used to initiate bundled interventions, including NICD order use and education, written tool dissemination, and weekly e-mail reminders (PDSA1). Continued education with dissemination of an instructional module and a resident champion were established to improve resident hesitancy (PDSA2). RESULTS: Special cause variation was observed for the primary outcome after PDSA2 with a positive shift in the number of early discharges. Special cause variation was observed in the process measure after PDSA1 with 6 points above the mean. CONCLUSIONS: Through NICD orders, written tool dissemination, and a resident champion to encourage system-wide culture change, patients were discharged earlier, improving patient flow.


Assuntos
Médicos Hospitalares , Alta do Paciente , Humanos , Melhoria de Qualidade , Fluxo de Trabalho
2.
EMBO Mol Med ; 9(2): 181-197, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28003334

RESUMO

Cancer genome sequencing projects have identified hundreds of genetic alterations, often at low frequencies, raising questions as to their functional relevance. One exemplar gene is HUWE1, which has been found to be mutated in numerous studies. However, due to the large size of this gene and a lack of functional analysis of identified mutations, their significance to carcinogenesis is unclear. To determine the importance of HUWE1, we chose to examine its function in colorectal cancer, where it is mutated in up to 15 per cent of tumours. Modelling of identified mutations showed that they inactivate the E3 ubiquitin ligase activity of HUWE1. Genetic deletion of Huwe1 rapidly accelerated tumourigenic in mice carrying loss of the intestinal tumour suppressor gene Apc, with a dramatic increase in tumour initiation. Mechanistically, this phenotype was driven by increased MYC and rapid DNA damage accumulation leading to loss of the second copy of Apc The increased levels of DNA damage sensitised Huwe1-deficient tumours to DNA-damaging agents and to deletion of the anti-apoptotic protein MCL1. Taken together, these data identify HUWE1 as a bona fide tumour suppressor gene in the intestinal epithelium and suggest a potential vulnerability of HUWE1-mutated tumours to DNA-damaging agents and inhibitors of anti-apoptotic proteins.


Assuntos
Carcinogênese , Neoplasias Colorretais/patologia , Dano ao DNA , Genes Supressores de Tumor , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo , Animais , Deleção de Genes , Camundongos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética
3.
Oncotarget ; 7(36): 57525-57544, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27438153

RESUMO

MYC oncoproteins deliver a potent oncogenic stimulus in several human cancers, making them major targets for drug development, but efforts to deliver clinically practical therapeutics have not yet been realized. In childhood cancer, aberrant expression of MYC and MYCN genes delineates a group of aggressive tumours responsible for a major proportion of pediatric cancer deaths. We designed a chemical-genetic screen that identifies compounds capable of enhancing proteasomal elimination of MYCN oncoprotein. We isolated several classes of compound that selectively kill MYCN expressing cells and we focus on inhibitors of PI3K/mTOR pathway in this study. We show that PI3K/mTOR inhibitors selectively killed MYCN-expressing neuroblastoma tumor cells, and induced significant apoptosis of transgenic MYCN-driven neuroblastoma tumors concomitant with elimination of MYCN protein in vivo. Mechanistically, the ability of these compounds to degrade MYCN requires complete blockade of mTOR but not PI3 kinase activity and we highlight NVP-BEZ235 as a PI3K/mTOR inhibitor with an ideal activity profile. These data establish that MYCN expression is a marker indicative of likely clinical sensitivity to mTOR inhibition, and provide a rationale for the selection of clinical candidate MYCN-destabilizers likely to be useful for the treatment of MYCN-driven cancers.


Assuntos
Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/tratamento farmacológico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Humanos , Imidazóis/química , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transplante de Neoplasias , Neuroblastoma/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Quinolinas/química , Transdução de Sinais , Transgenes
4.
Cell Rep ; 10(1): 88-102, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25543140

RESUMO

The E3 ubiquitin ligase HUWE1, deregulated in carcinoma, has been implicated in tumor formation. Here, we uncover a role for HUWE1 in cell migration and invasion through degrading the RAC activator TIAM1, implying an additional function in malignant progression. In MDCKII cells in response to HGF, HUWE1 catalyzes TIAM1 ubiquitylation and degradation predominantly at cell-cell adhesions, facilitating junction disassembly, migration, and invasion. Depleting HUWE1 or mutating the TIAM1 ubiquitylation site prevents TIAM1 degradation, antagonizing scattering, and invasion. Moreover, simultaneous depletion of TIAM1 restores migration and invasion in HUWE1-depleted cells. Significantly, we show that HUWE1 stimulates human lung cancer cell invasion through regulating TIAM1 stability. Finally, we demonstrate that HUWE1 and TIAM1 protein levels are inversely correlated in human lung carcinomas. Thus, we elucidate a critical role for HUWE1 in regulating epithelial cell-cell adhesion and provide additional evidence that ubiquitylation contributes to spatiotemporal control of RAC.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Neoplasias Pulmonares/genética , Invasividade Neoplásica/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinogênese , Adesão Celular/genética , Movimento Celular/genética , Cães , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Neoplasias Pulmonares/patologia , Células Madin Darby de Rim Canino , Invasividade Neoplásica/patologia , Proteólise , Transdução de Sinais/genética , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética , Proteínas rac de Ligação ao GTP/metabolismo
5.
Radiology ; 266(1): 130-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23169794

RESUMO

PURPOSE: To evaluate noninvasive and clinically translatable magnetic resonance (MR) imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of aggressive, MYCN-amplified neuroblastoma. MATERIALS AND METHODS: All experiments were performed in accordance with the local ethical review panel and the UK Home Office Animals Scientific Procedures Act 1986 and with the UK National Cancer Research Institute guidelines for the welfare of animals in cancer research. Multiparametric MR imaging was performed of abdominal tumors found in the TH-MYCN model. T2-weighted MR imaging, quantitation of native relaxation times T1 and T2, the relaxation rate R2*, and dynamic contrast-enhanced MR imaging were used to monitor tumor response to cyclophosphamide (25 mg/kg), the vascular disrupting agent ZD6126 (200 mg/kg), or the antiangiogenic agent cediranib (6 mg/kg, daily). Any significant changes in the measured parameters, and in the magnitude of the changes after treatment between treated and control cohorts, were identified by using Student two-tailed paired and unpaired t test, respectively, with a 5% level of significance. RESULTS: Treatment with cyclophosphamide or cediranib induced a 54% or 20% reduction in tumor volume at 48 hours, respectively (P < .005 and P < .005, respectively; P < .005 and P < .005 versus control, respectively). Treatment with ZD6126 induced a 45% reduction in mean tumor volume 24 hours after treatment (P < .005; P < .005 versus control). The antitumor activity of cyclophosphamide, cediranib, and ZD6126 was consistently associated with a decrease in tumor T1 (P < .005, P < .005, and P < .005, respectively; P < .005, P < .005, and P < .005 versus control, respectively) and with a correlation between therapy-induced changes in native T1 and changes in tumor volume (r = 0.56; P < .005). Tumor response to cediranib was also associated with a decrease in the dynamic contrast-enhanced MR imaging-derived volume transfer constant (P = .07; P < .05 versus control) and enhancing fraction (P < .05; P < .01 versus control), and an increase in R2* (P < .005; P < .05 versus control). CONCLUSION: The T1 relaxation time is a robust noninvasive imaging biomarker of response to therapy in tumors in TH-MYCN mice, which emulate high-risk neuroblastoma in children. T1 measurements can be readily implemented on clinical MR systems and should be investigated in translational clinical trials of new targeted therapies for pediatric neuroblastoma. SUPPLEMENTAL MATERIAL: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120128/-/DC1.


Assuntos
Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Animais , Biomarcadores , Humanos , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Prognóstico , Proteínas Proto-Oncogênicas/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento
6.
PLoS One ; 6(12): e28356, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164278

RESUMO

BACKGROUND: MicroRNAs are small molecules which regulate gene expression post-transcriptionally and aberrant expression of several miRNAs is associated with neuroblastoma, a childhood cancer arising from precursor cells of the sympathetic nervous system. Amplification of the MYCN transcription factor characterizes the most clinically aggressive subtype of this disease, and although alteration of p53 signaling is not commonly found in primary tumors, deregulation of proteins involved in this pathway frequently arise in recurrent disease after pharmacological treatment. TH-MYCN is a well-characterized transgenic model of MYCN-driven neuroblastoma which recapitulates many clinicopathologic features of the human disease. Here, we evaluate the dysregulation of miRNAs in tumors from TH-MYCN mice that are either wild-type (TH-MYCN) or deficient (TH-MYCN/p53ER(TAM)) for the p53 tumor suppressor gene. PRINCIPAL FINDINGS: We analyzed the expression of 591 miRNAs in control (adrenal) and neuroblastoma tumor tissues derived from either TH-MYCN or TH-MYCN/p53ER(TAM) mice, respectively wild-type or deficient in p53. Comparing miRNA expression in tumor and control samples, we identified 159 differentially expressed miRNAs. Using data previously obtained from human neuroblastoma samples, we performed a comparison of miRNA expression between murine and human tumors to assess the concordance between murine and human expression data. Notably, the miR-17-5p-92 oncogenic polycistronic cluster, which is over-expressed in human MYCN amplified tumors, was over-expressed in mouse tumors. Moreover, analyzing miRNAs expression in a mouse model (TH-MYCN/p53ER(TAM)) possessing a transgenic p53 allele that drives the expression of an inactive protein, we identified miR-125b-3p and miR-676 as directly or indirectly regulated by the level of functional p53. SIGNIFICANCE: Our study represents the first miRNA profiling of an important mouse model of neuroblastoma. Similarities and differences in miRNAs expression between human and murine neuroblastoma were identified, providing important insight into the efficacy of this mouse model for assessing miRNA involvement in neuroblastoma and their potential effectiveness as therapeutic targets.


Assuntos
Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neuroblastoma/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética , Glândulas Suprarrenais/metabolismo , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/genética , Transdução de Sinais
7.
Mol Cancer Ther ; 10(11): 2115-23, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21885865

RESUMO

Aurora kinases regulate key stages of mitosis including centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. Aurora A and B kinase overexpression has also been associated with various human cancers, and as such, they have been extensively studied as novel antimitotic drug targets. Here, we characterize the Aurora kinase inhibitor CCT137690, a highly selective, orally bioavailable imidazo[4,5-b]pyridine derivative that inhibits Aurora A and B kinases with low nanomolar IC(50) values in both biochemical and cellular assays and exhibits antiproliferative activity against a wide range of human solid tumor cell lines. CCT137690 efficiently inhibits histone H3 and transforming acidic coiled-coil 3 phosphorylation (Aurora B and Aurora A substrates, respectively) in HCT116 and HeLa cells. Continuous exposure of tumor cells to the inhibitor causes multipolar spindle formation, chromosome misalignment, polyploidy, and apoptosis. This is accompanied by p53/p21/BAX induction, thymidine kinase 1 downregulation, and PARP cleavage. Furthermore, CCT137690 treatment of MYCN-amplified neuroblastoma cell lines inhibits cell proliferation and decreases MYCN protein expression. Importantly, in a transgenic mouse model of neuroblastoma that overexpresses MYCN protein and is predisposed to spontaneous neuroblastoma formation, this compound significantly inhibits tumor growth. The potent preclinical activity of CCT137690 suggests that this inhibitor may benefit patients with MYCN-amplified neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Imidazóis/farmacologia , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Aurora Quinase A , Aurora Quinase B , Aurora Quinases , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Amplificação de Genes/efeitos dos fármacos , Células HCT116 , Células HeLa , Humanos , Imidazóis/administração & dosagem , Camundongos , Camundongos Transgênicos , Mitose/efeitos dos fármacos , Proteína Proto-Oncogênica N-Myc , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Poliploidia , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Serina-Treonina Quinases/genética , Piridinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA