Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Bioinformatics ; 40(1)2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38195927

RESUMO

SUMMARY: Phylodynamic models link phylogenetic trees to biologically-relevant parameters such as speciation and extinction rates (macroevolution), effective population sizes and migration rates (ecology and phylogeography), and transmission and removal/recovery rates (epidemiology) to name a few. Being able to simulate phylogenetic trees and population dynamics under these models is the basis for (i) developing and testing of phylodynamic inference algorithms, (ii) performing simulation studies which quantify the biases stemming from model-misspecification, and (iii) performing so-called model adequacy assessments by simulating samples from the posterior predictive distribution. Here I introduce ReMASTER, a package for the phylogenetic inference platform BEAST 2 that provides a simple and efficient approach to specifying and simulating the phylogenetic trees and population dynamics arising from phylodynamic models. Being a component of BEAST 2 allows ReMASTER to also form the basis of joint simulation and inference analyses. ReMASTER is a complete rewrite of an earlier package, MASTER, and boasts improved efficiency, ease of use, flexibility of model specification, and deeper integration with BEAST 2. AVAILABILITY AND IMPLEMENTATION: ReMASTER can be installed directly from the BEAST 2 package manager, and its documentation is available online at https://tgvaughan.github.io/remaster. ReMASTER is free software, and is distributed under version 3 of the GNU General Public License. The Java source code for ReMASTER is available from https://github.com/tgvaughan/remaster.


Assuntos
Algoritmos , Software , Filogenia , Simulação por Computador , Filogeografia
2.
Proc Natl Acad Sci U S A ; 121(2): e2308125121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38175864

RESUMO

We estimate the basic reproductive number and case counts for 15 distinct Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreaks, distributed across 11 populations (10 countries and one cruise ship), based solely on phylodynamic analyses of genomic data. Our results indicate that, prior to significant public health interventions, the reproductive numbers for 10 (out of 15) of these outbreaks are similar, with median posterior estimates ranging between 1.4 and 2.8. These estimates provide a view which is complementary to that provided by those based on traditional line listing data. The genomic-based view is arguably less susceptible to biases resulting from differences in testing protocols, testing intensity, and import of cases into the community of interest. In the analyses reported here, the genomic data primarily provide information regarding which samples belong to a particular outbreak. We observe that once these outbreaks are identified, the sampling dates carry the majority of the information regarding the reproductive number. Finally, we provide genome-based estimates of the cumulative number of infections for each outbreak. For 7 out of 11 of the populations studied, the number of confirmed cases is much bigger than the cumulative number of infections estimated from the sequence data, a possible explanation being the presence of unsequenced outbreaks in these populations.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Surtos de Doenças , Genômica , Navios
4.
Mol Biol Evol ; 40(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264694

RESUMO

Despite its increasing role in the understanding of infectious disease transmission at the applied and theoretical levels, phylodynamics lacks a well-defined notion of ideal data and optimal sampling. We introduce a method to visualize and quantify the relative impact of pathogen genome sequence and sampling times-two fundamental sources of data for phylodynamics under birth-death-sampling models-to understand how each drives phylodynamic inference. Applying our method to simulated data and real-world SARS-CoV-2 and H1N1 Influenza data, we use this insight to elucidate fundamental trade-offs and guidelines for phylodynamic analyses to draw the most from sequence data. Phylodynamics promises to be a staple of future responses to infectious disease threats globally. Continuing research into the inherent requirements and trade-offs of phylodynamic data and inference will help ensure phylodynamic tools are wielded in ever more targeted and efficient ways.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Filogenia , SARS-CoV-2/genética
5.
Proc Natl Acad Sci U S A ; 120(17): e2215610120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068240

RESUMO

In 2013 to 2017, avian influenza A(H7N9) virus has caused five severe epidemic waves of human infections in China. The role of live bird markets (LBMs) in the transmission dynamics of H7N9 remains unclear. Using a Bayesian phylodynamic approach, we shed light on past H7N9 transmission events at the human-LBM interface that were not directly observed using case surveillance data-based approaches. Our results reveal concurrent circulation of H7N9 lineages in Yangtze and Pearl River Delta regions, with evidence of local transmission during each wave. Our results indicate that H7N9 circulated in humans and LBMs for weeks to months before being first detected. Our findings support the seasonality of H7N9 transmission and suggest a high number of underreported infections, particularly in LBMs. We provide evidence for differences in virus transmissibility between low and highly pathogenic H7N9. We demonstrate a regional spatial structure for the spread of H7N9 among LBMs, highlighting the importance of further investigating the role of local live poultry trade in virus transmission. Our results provide estimates of avian influenza virus (AIV) transmission at the LBM level, providing a unique opportunity to better prepare surveillance plans at LBMs for response to future AIV epidemics.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Teorema de Bayes , Aves Domésticas , China/epidemiologia
6.
Sci Transl Med ; 15(680): eabn7979, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36346321

RESUMO

Genome sequences from evolving infectious pathogens allow quantification of case introductions and local transmission dynamics. We sequenced 11,357 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Switzerland in 2020-the sixth largest effort globally. Using a representative subset of these data, we estimated viral introductions to Switzerland and their persistence over the course of 2020. We contrasted these estimates with simple null models representing the absence of certain public health measures. We show that Switzerland's border closures decoupled case introductions from incidence in neighboring countries. Under a simple model, we estimate an 86 to 98% reduction in introductions during Switzerland's strictest border closures. Furthermore, the Swiss 2020 partial lockdown roughly halved the time for sampled introductions to die out. Last, we quantified local transmission dynamics once introductions into Switzerland occurred using a phylodynamic model. We found that transmission slowed 35 to 63% upon outbreak detection in summer 2020 but not in fall. This finding may indicate successful contact tracing over summer before overburdening in fall. The study highlights the added value of genome sequencing data for understanding transmission dynamics.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Saúde Pública , Suíça/epidemiologia , Controle de Doenças Transmissíveis , Genoma Viral/genética , Filogenia
7.
Virus Evol ; 8(2): veac073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533150

RESUMO

In winter 2016-7, Europe was severely hit by an unprecedented epidemic of highly pathogenic avian influenza viruses (HPAIVs), causing a significant impact on animal health, wildlife conservation, and livestock economic sustainability. By applying phylodynamic tools to virus sequences collected during the epidemic, we investigated when the first infections occurred, how many infections were unreported, which factors influenced virus spread, and how many spillover events occurred. HPAIV was likely introduced into poultry farms during the autumn, in line with the timing of wild birds' migration. In Germany, Hungary, and Poland, the epidemic was dominated by farm-to-farm transmission, showing that understanding of how farms are connected would greatly help control efforts. In the Czech Republic, the epidemic was dominated by wild bird-to-farm transmission, implying that more sustainable prevention strategies should be developed to reduce HPAIV exposure from wild birds. Inferred transmission parameters will be useful to parameterize predictive models of HPAIV spread. None of the predictors related to live poultry trade, poultry census, and geographic proximity were identified as supportive predictors of HPAIV spread between farms across borders. These results are crucial to better understand HPAIV transmission dynamics at the domestic-wildlife interface with the view to reduce the impact of future epidemics.

8.
Viruses ; 14(8)2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-36016270

RESUMO

The multi-type birth-death model with sampling is a phylodynamic model which enables the quantification of past population dynamics in structured populations based on phylogenetic trees. The BEAST 2 package bdmm implements an algorithm for numerically computing the probability density of a phylogenetic tree given the population dynamic parameters under this model. In the initial release of bdmm, analyses were computationally limited to trees consisting of up to approximately 250 genetic samples. We implemented important algorithmic changes to bdmm which dramatically increased the number of genetic samples that could be analyzed and which improved the numerical robustness and efficiency of the calculations. Including more samples led to the improved precision of parameter estimates, particularly for structured models with a high number of inferred parameters. Furthermore, we report on several model extensions to bdmm, inspired by properties common to empirical datasets. We applied this improved algorithm to two partly overlapping datasets of the Influenza A virus HA sequences sampled around the world-one with 500 samples and the other with only 175-for comparison. We report and compare the global migration patterns and seasonal dynamics inferred from each dataset. In this way, we show the information that is gained by analyzing the bigger dataset, which became possible with the presented algorithmic changes to bdmm. In summary, bdmm allows for the robust, faster, and more general phylodynamic inference of larger datasets.


Assuntos
Algoritmos , Filogenia , Dinâmica Populacional
9.
PLoS Comput Biol ; 18(8): e1010394, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984845

RESUMO

When two influenza viruses co-infect the same cell, they can exchange genome segments in a process known as reassortment. Reassortment is an important source of genetic diversity and is known to have been involved in the emergence of most pandemic influenza strains. However, because of the difficulty in identifying reassortment events from viral sequence data, little is known about their role in the evolution of the seasonal influenza viruses. Here we introduce TreeKnit, a method that infers ancestral reassortment graphs (ARG) from two segment trees. It is based on topological differences between trees, and proceeds in a greedy fashion by finding regions that are compatible in the two trees. Using simulated genealogies with reassortments, we show that TreeKnit performs well in a wide range of settings and that it is as accurate as a more principled bayesian method, while being orders of magnitude faster. Finally, we show that it is possible to use the inferred ARG to better resolve segment trees and to construct more informative visualizations of reassortments.


Assuntos
Influenza Humana , Orthomyxoviridae , Teorema de Bayes , Genoma Viral/genética , Humanos , Orthomyxoviridae/genética , Filogenia , Vírus Reordenados/genética
10.
Philos Trans R Soc Lond B Biol Sci ; 377(1861): 20210245, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35989605

RESUMO

The spread of antibiotic resistance genes on plasmids is a threat to human and animal health. Phylogenies of bacteria and their plasmids contain clues regarding the frequency of plasmid transfer events, as well as the co-evolution of plasmids and their hosts. However, whole genome sequencing data from diverse ecological or clinical bacterial samples are rarely used to study plasmid phylogenies and resistance gene transfer. This is partially due to the difficulty of extracting plasmids from short-read sequencing data. Here, we use both short- and long-read sequencing data of 24 clinical extended-spectrum [Formula: see text]-lactamase (ESBL)-producing Escherichia coli to estimate chromosomal and plasmid phylogenies. We compare the impact of different sequencing and assembly methodologies on these phylogenies and on the inference of horizontal gene transfer. We find that chromosomal phylogenies can be estimated robustly with all methods, whereas plasmid phylogenies have more variable topology and branch lengths across the methods used. Specifically, hybrid methods that use long reads to resolve short-read assemblies (HybridSPAdes and Unicycler) perform better than those that started from long reads during assembly graph generation (Canu). By contrast, the inference of plasmid and antibiotic resistance gene transfer using a parsimony-based criterion is mostly robust to the choice of sequencing and assembly method. This article is part of a discussion meeting issue 'Genomic population structures of microbial pathogens'.


Assuntos
Transferência Genética Horizontal , Genoma Bacteriano , Animais , Antibacterianos , Escherichia coli/genética , Humanos , Filogenia , Plasmídeos/genética , Análise de Sequência de DNA/métodos
11.
Virus Evol ; 8(1): veac045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35775026

RESUMO

Phylodynamics requires an interdisciplinary understanding of phylogenetics, epidemiology, and statistical inference. It has also experienced more intense application than ever before amid the SARS-CoV-2 pandemic. In light of this, we present a review of phylodynamic models beginning with foundational models and assumptions. Our target audience is public health researchers, epidemiologists, and biologists seeking a working knowledge of the links between epidemiology, evolutionary models, and resulting epidemiological inference. We discuss the assumptions linking evolutionary models of pathogen population size to epidemiological models of the infected population size. We then describe statistical inference for phylodynamic models and list how output parameters can be rearranged for epidemiological interpretation. We go on to cover more sophisticated models and finish by highlighting future directions.

12.
Transbound Emerg Dis ; 69(3): 1020-1029, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33683829

RESUMO

Amongst newly developed approaches to analyse molecular data, phylodynamic models are receiving much attention because of their potential to reveal changes to viral populations over short periods. This knowledge can be very important for understanding disease impacts. However, their accuracy needs to be fully understood, especially in relation to wildlife disease epidemiology, where sampling and prior knowledge may be limited. The release of the rabbit haemorrhagic disease virus (RHDV) as biological control in naïve rabbit populations in Australia in 1996 provides a unique data set with which to validate phylodynamic models. By comparing results obtained from RHDV sequence data with our current understanding of RHDV epidemiology in Australia, we evaluated the performances of these recently developed models. In line with our expectations, coalescent analyses detected a sharp increase in the virus population size in the first few months after release, followed by a more gradual increase. Phylodynamic analyses using a birth-death model generated effective reproductive number estimates (the average number of secondary infections per each infectious case, Re ) larger than one for most of the epochs considered. However, the possible range of the initial Re included estimates lower than one despite the known rapid spread of RHDV in Australia. Furthermore, the analyses that accounted for geographical structuring failed to converge. We argue that the difficulties that we encountered most likely stem from the fact that the samples available from 1996 to 2014 were too sparse with respect to both geographic and within outbreak coverage to adequately infer some of the model parameters. In general, while these phylodynamic analyses proved to be greatly informative in some regards, we caution that their interpretation may not be straightforward. We recommend further research to evaluate the robustness of these models to assumption violations and sensitivity to sampling regimes.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Animais Selvagens , Austrália/epidemiologia , Infecções por Caliciviridae/veterinária , Vírus da Doença Hemorrágica de Coelhos/genética , Densidade Demográfica , Coelhos
13.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34893876

RESUMO

The structured coalescent allows inferring migration patterns between viral subpopulations from genetic sequence data. However, these analyses typically assume that no genetic recombination process impacted the sequence evolution of pathogens. For segmented viruses, such as influenza, that can undergo reassortment this assumption is broken. Reassortment reshuffles the segments of different parent lineages upon a coinfection event, which means that the shared history of viruses has to be represented by a network instead of a tree. Therefore, full genome analyses of such viruses are complex or even impossible. Although this problem has been addressed for unstructured populations, it is still impossible to account for population structure, such as induced by different host populations, whereas also accounting for reassortment. We address this by extending the structured coalescent to account for reassortment and present a framework for investigating possible ties between reassortment and migration (host jump) events. This method can accurately estimate subpopulation dependent effective populations sizes, reassortment, and migration rates from simulated data. Additionally, we apply the new model to avian influenza A/H5N1 sequences, sampled from two avian host types, Anseriformes and Galliformes. We contrast our results with a structured coalescent without reassortment inference, which assumes independently evolving segments. This reveals that taking into account segment reassortment and using sequencing data from several viral segments for joint phylodynamic inference leads to different estimates for effective population sizes, migration, and clock rates. This new model is implemented as the Structured Coalescent with Reassortment package for BEAST 2.5 and is available at https://github.com/jugne/SCORE.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Humana , Animais , Genoma Viral , Humanos , Virus da Influenza A Subtipo H5N1/genética , Filogenia , Vírus Reordenados/genética
14.
Viruses ; 15(1)2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36680062

RESUMO

Since their introduction in 1859, European rabbits (Oryctolagus cuniculus) have had a devastating impact on agricultural production and biodiversity in Australia, with competition and land degradation by rabbits being one of the key threats to agricultural and biodiversity values in Australia. Biocontrol agents, with the most important being the rabbit haemorrhagic disease virus 1 (RHDV1), constitute the most important landscape-scale control strategies for rabbits in Australia. Monitoring field strain dynamics is complex and labour-intensive. Here, using phylodynamic models to analyse the available RHDV molecular data, we aimed to: investigate the epidemiology of various strains, use molecular data to date the emergence of new variants and evaluate whether different strains are outcompeting one another. We determined that the two main pathogenic lagoviruses variants in Australia (RHDV1 and RHDV2) have had similar dynamics since their release, although over different timeframes (substantially shorter for RHDV2). We also found a strong geographic difference in their activities and evidence of overall competition between the two viruses.


Assuntos
Infecções por Caliciviridae , Vírus da Doença Hemorrágica de Coelhos , Animais , Coelhos , Vírus da Doença Hemorrágica de Coelhos/genética , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/veterinária , Austrália/epidemiologia , Filogenia
15.
Metabolites ; 11(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34564425

RESUMO

Metabolomics methods often encounter trade-offs between quantification accuracy and coverage, with truly comprehensive coverage only attainable through a multitude of complementary assays. Due to the lack of standardization and the variety of metabolomics assays, it is difficult to integrate datasets across studies or assays. To inform metabolomics platform selection, with a focus on posttraumatic stress disorder (PTSD), we review platform use and sample sizes in psychiatric metabolomics studies and then evaluate five prominent metabolomics platforms for coverage and performance, including intra-/inter-assay precision, accuracy, and linearity. We found performance was variable between metabolite classes, but comparable across targeted and untargeted approaches. Within all platforms, precision and accuracy were highly variable across classes, ranging from 0.9-63.2% (coefficient of variation) and 0.6-99.1% for accuracy to reference plasma. Several classes had high inter-assay variance, potentially impeding dissociation of a biological signal, including glycerophospholipids, organooxygen compounds, and fatty acids. Coverage was platform-specific and ranged from 16-70% of PTSD-associated metabolites. Non-overlapping coverage is challenging; however, benefits of applying multiple metabolomics technologies must be weighed against cost, biospecimen availability, platform-specific normative levels, and challenges in merging datasets. Our findings and open-access cross-platform dataset can inform platform selection and dataset integration based on platform-specific coverage breadth/overlap and metabolite-specific performance.

16.
Syst Biol ; 71(1): 208-220, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34228807

RESUMO

Evolutionary models account for either population- or species-level processes but usually not both. We introduce a new model, the FBD-MSC, which makes it possible for the first time to integrate both the genealogical and fossilization phenomena, by means of the multispecies coalescent (MSC) and the fossilized birth-death (FBD) processes. Using this model, we reconstruct the phylogeny representing all extant and many fossil Caninae, recovering both the relative and absolute time of speciation events. We quantify known inaccuracy issues with divergence time estimates using the popular strategy of concatenating molecular alignments and show that the FBD-MSC solves them. Our new integrative method and empirical results advance the paradigm and practice of probabilistic total evidence analyses in evolutionary biology.[Caninae; fossilized birth-death; molecular clock; multispecies coalescent; phylogenetics; species trees.].


Assuntos
Especiação Genética , Modelos Biológicos , Evolução Biológica , Fósseis , Filogenia
17.
Nature ; 595(7869): 707-712, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34098568

RESUMO

Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3-5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes.


Assuntos
COVID-19/transmissão , COVID-19/virologia , SARS-CoV-2/isolamento & purificação , Estações do Ano , COVID-19/diagnóstico , COVID-19/epidemiologia , Europa (Continente)/epidemiologia , Genótipo , Humanos , Filogenia , SARS-CoV-2/genética , Fatores de Tempo , Viagem/legislação & jurisprudência , Viagem/estatística & dados numéricos
18.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33571105

RESUMO

The investigation of migratory patterns during the SARS-CoV-2 pandemic before spring 2020 border closures in Europe is a crucial first step toward an in-depth evaluation of border closure policies. Here we analyze viral genome sequences using a phylodynamic model with geographic structure to estimate the origin and spread of SARS-CoV-2 in Europe prior to border closures. Based on SARS-CoV-2 genomes, we reconstruct a partial transmission tree of the early pandemic and coinfer the geographic location of ancestral lineages as well as the number of migration events into and between European regions. We find that the predominant lineage spreading in Europe during this time has a most recent common ancestor in Italy and was probably seeded by a transmission event in either Hubei, China or Germany. We do not find evidence for preferential migration paths from Hubei into different European regions or from each European region to the others. Sustained local transmission is first evident in Italy and then shortly thereafter in the other European regions considered. Before the first border closures in Europe, we estimate that the rate of occurrence of new cases from within-country transmission was within the bounds of the estimated rate of new cases from migration. In summary, our analysis offers a view on the early state of the epidemic in Europe and on migration patterns of the virus before border closures. This information will enable further study of the necessity and timeliness of border closures.


Assuntos
COVID-19/epidemiologia , SARS-CoV-2/isolamento & purificação , COVID-19/virologia , Europa (Continente)/epidemiologia , Genoma Viral , Humanos , Filogeografia , SARS-CoV-2/genética
19.
J Theor Biol ; 509: 110400, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-32739241

RESUMO

We consider a homogeneous birth-death process with three different sampling schemes. First, individuals can be sampled through time and included in a reconstructed phylogenetic tree. Second, they can be sampled through time and only recorded as a point 'occurrence' along a timeline. Third, extant individuals can be sampled and included in the reconstructed phylogenetic tree with a fixed probability. We further consider that sampled individuals can be removed or not from the process, upon sampling, with fixed probability. We derive the probability distribution of the population size at any time in the past conditional on the joint observation of a reconstructed phylogenetic tree and a record of occurrences not included in the tree. We also provide an algorithm to simulate ancestral population size trajectories given the observation of a reconstructed phylogenetic tree and occurrences. This distribution can be readily used to draw inferences about the ancestral population size in the field of epidemiology and macroevolution. In epidemiology, these results will allow data from epidemiological case count studies to be used in conjunction with molecular sequencing data (yielding reconstructed phylogenetic trees) to coherently estimate prevalence through time. In macroevolution, it will foster the joint examination of the fossil record and extant taxa to reconstruct past biodiversity.


Assuntos
Algoritmos , Fósseis , Humanos , Filogenia , Densidade Demográfica , Probabilidade
20.
medRxiv ; 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33269368

RESUMO

Following its emergence in late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic resulting in unprecedented efforts to reduce transmission and develop therapies and vaccines (WHO Emergency Committee, 2020; Zhu et al., 2020). Rapidly generated viral genome sequences have allowed the spread of the virus to be tracked via phylogenetic analysis (Worobey et al., 2020; Hadfield et al., 2018; Pybus et al., 2020). While the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced, allowing continent-specific variants to emerge. However, within Europe travel resumed in the summer of 2020, and the impact of this travel on the epidemic is not well understood. Here we report on a novel SARS-CoV-2 variant, 20E (EU1), that emerged in Spain in early summer, and subsequently spread to multiple locations in Europe. We find no evidence of increased transmissibility of this variant, but instead demonstrate how rising incidence in Spain, resumption of travel across Europe, and lack of effective screening and containment may explain the variant's success. Despite travel restrictions and quarantine requirements, we estimate 20E (EU1) was introduced hundreds of times to countries across Europe by summertime travellers, likely undermining local efforts to keep SARS-CoV-2 cases low. Our results demonstrate how a variant can rapidly become dominant even in absence of a substantial transmission advantage in favorable epidemiological settings. Genomic surveillance is critical to understanding how travel can impact SARS-CoV-2 transmission, and thus for informing future containment strategies as travel resumes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA