Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 6(16): 5907-20, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27547364

RESUMO

The increase in size of human populations in urban and agricultural areas has resulted in considerable habitat conversion globally. Such anthropogenic areas have specific environmental characteristics, which influence the physiology, life history, and population dynamics of plants and animals. For example, the date of bud burst is advanced in urban compared to nearby natural areas. In some birds, breeding success is determined by synchrony between timing of breeding and peak food abundance. Pertinently, caterpillars are an important food source for the nestlings of many bird species, and their abundance is influenced by environmental factors such as temperature and date of bud burst. Higher temperatures and advanced date of bud burst in urban areas could advance peak caterpillar abundance and thus affect breeding phenology of birds. In order to test whether laying date advance and clutch sizes decrease with the intensity of urbanization, we analyzed the timing of breeding and clutch size in relation to intensity of urbanization as a measure of human impact in 199 nest box plots across Europe, North Africa, and the Middle East (i.e., the Western Palearctic) for four species of hole-nesters: blue tits (Cyanistes caeruleus), great tits (Parus major), collared flycatchers (Ficedula albicollis), and pied flycatchers (Ficedula hypoleuca). Meanwhile, we estimated the intensity of urbanization as the density of buildings surrounding study plots measured on orthophotographs. For the four study species, the intensity of urbanization was not correlated with laying date. Clutch size in blue and great tits does not seem affected by the intensity of urbanization, while in collared and pied flycatchers it decreased with increasing intensity of urbanization. This is the first large-scale study showing a species-specific major correlation between intensity of urbanization and the ecology of breeding. The underlying mechanisms for the relationships between life history and urbanization remain to be determined. We propose that effects of food abundance or quality, temperature, noise, pollution, or disturbance by humans may on their own or in combination affect laying date and/or clutch size.

2.
J Exp Biol ; 218(Pt 13): 2106-15, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25964421

RESUMO

In the context of sexual and natural selection, an allocation trade-off for carotenoid pigments may exist because of their obligate dietary origin and their role both in the antioxidant and immune systems and in the production of coloured signals in various taxa, particularly birds. When birds have expended large amounts of carotenoids to feather growth such as after autumn moult, bird health and oxidative status might be more constrained. We tested this hypothesis in a bird species with carotenoid-based plumage colour, by manipulating dietary carotenoids and physical activity, which can decrease antioxidant capacity and increase reactive oxygen metabolite (ROM) concentration. Great tits were captured after moult and kept in aviaries, under three treatments: physical handicap and dietary supplementation with carotenoids, physical handicap and control diet, and no handicap and control diet. We measured plasma composition (antioxidant capacity, ROM concentration, and vitamin A, vitamin E and total carotenoid concentrations), immune system activation (blood sedimentation) and stress response (heterophil/lymphocyte ratio) and predicted that handicap treatment should influence these negatively and carotenoid supplementation positively. Coloration of yellow feathers was also measured. Carotenoid supplementation increased total plasma carotenoid concentration, decreased feather carotenoid chroma and marginally increased ROM concentration. Handicap increased blood sedimentation only in males but had no clear influence on oxidative stress, which contradicted previous studies. Further studies are needed to investigate how physical activity and carotenoid availability might interact and influence oxidative stress outside the moult period, and their combined potential influence on attractiveness and reproductive investment later during the breeding season.


Assuntos
Carotenoides/metabolismo , Atividade Motora , Passeriformes/fisiologia , Animais , Antioxidantes/análise , Carotenoides/sangue , Dieta , Plumas/crescimento & desenvolvimento , Plumas/fisiologia , Feminino , Linfócitos/metabolismo , Masculino , Estresse Oxidativo , Passeriformes/crescimento & desenvolvimento , Pigmentação , Espécies Reativas de Oxigênio/metabolismo , Vitamina A/sangue , Vitamina E/sangue
3.
Am Nat ; 182(2): 223-33, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23852356

RESUMO

Enhanced thermal conditions have been credited as a driving force for the evolution of viviparity, particularly in squamate reptiles, among which it has independently evolved more than 100 times. However, maternal thermoregulation is also a critical component of reproduction in oviparous squamates, for which considerable embryonic development occurs prior to oviposition. When carrying eggs, oviparous mothers modify thermoregulation in a manner similar to that of pregnant females. To further understand the role of temperature in influencing reproductive strategies, it is critical that we elucidate the degree to which thermal sensitivity varies across developmental stages. We studied stage-dependent embryonic sensitivity in a viviparous snake, the aspic viper (Vipera aspis). We manipulated female body temperature at different stages of pregnancy-early development, early embryonic growth, and late embryonic growth-by imposing two contrasting daily thermal cycles that mimicked reproductive (warm) and nonreproductive (cool) female temperature profiles. Thermal sensitivity of offspring phenotype was stage dependent, with offspring quality more negatively affected when exposure to cool temperatures occurred early in development. In contrast, developmental rate was slowed by the cooler cycle, independent of the timing of the exposure. Given the more persistent effect on phenology, phenological effects likely provide a greater driving force for complete embryonic retention (i.e., viviparity).


Assuntos
Temperatura Corporal , Viperidae/embriologia , Viviparidade não Mamífera , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Comportamento Animal , Feminino , Fenótipo , Viperidae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA