Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770547

RESUMO

Phosphates in high concentrations are harmful pollutants for the environment, and new and cheap solutions are currently needed for phosphate removal from polluted liquid media. Iron oxide nanoparticles show a promising capacity for removing phosphates from polluted media and can be easily separated from polluted media under an external magnetic field. However, they have to display a high surface area allowing high removal pollutant capacity while preserving their magnetic properties. In that context, the reproducible synthesis of magnetic iron oxide raspberry-shaped nanostructures (RSNs) by a modified polyol solvothermal method has been optimized, and the conditions to dope the latter with cobalt, zinc, and aluminum to improve the phosphate adsorption have been determined. These RSNs consist of oriented aggregates of iron oxide nanocrystals, providing a very high saturation magnetization and a superparamagnetic behavior that favor colloidal stability. Finally, the adsorption of phosphates as a function of pH, time, and phosphate concentration has been studied. The undoped and especially aluminum-doped RSNs were demonstrated to be very effective phosphate adsorbents, and they can be extracted from the media by applying a magnet.

2.
Mater Sci Eng C Mater Biol Appl ; 115: 111124, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32600723

RESUMO

Mesoporous silica nanoparticles with a superparamagnetic iron oxide core were prepared in this work, in order to obtain multifunctional platforms with adequate features for cancer theranostics. Three different core-shell nanocomplexes were obtained: IO-OAm/mSiO2, IO-APTES/mSiO2 and IO/SiO2/mSiO2. In the case of IO-OAm/mSiO2 and IO-APTES/mSiO2, iron oxide (IO) was obtained by thermal decomposition, having in this case a coating of oleylamine (OAm) that was in the second formulation exchanged by (3-aminopropyl)triethoxysilane ligand (APTES). Regarding the IO/SiO2/mSiO2 formulation, iron oxide was synthesized by microemulsion. The mesoporous silica shell (mSiO2) on the IO nanoparticles was obtained by sol-gel and the final materials were dried by supercritical fluids drying. VSM confirmed the superparamagnetic behaviour of the nanoparticles, leading to MS of 4.0, 1.8 and 10.2 emu·g-1, for IO-OAm/mSiO2, IO-APTES/mSiO2 and IO/SiO2/mSiO2, respectively. NMR relaxometry has shown the potential of these nanoparticles to be used as T2 contrast agents, with r2 values as high as 63.93 s-1·mM-1 Fe. The three types of nanoparticles exhibited loading contents of epirubicin of ~3% and drug release percentages of 19% for IO-OAm/mSiO2, 24% for IO-APTES/mSiO2 and 31% for IO/SiO2/mSiO2. The cytotoxicity of drug-loaded and non-loaded most promising nanoparticles was assessed, showing high potential of these platforms for application as anticancer drug carriers.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Epirubicina/farmacologia , Nanopartículas de Magnetita/química , Antibióticos Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Epirubicina/química , Células Hep G2 , Humanos , Tamanho da Partícula , Porosidade , Medicina de Precisão , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA