Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Res ; 285: 127786, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38820703

RESUMO

The α-Gal syndrome (AGS) is an IgE-mediated tick borne-allergy that results in delayed anaphylaxis to the consumption of mammalian meat and products containing α-Gal. Considering that α-Gal-containing microbiota modulates natural antibody production to this glycan, this study aimed to evaluate the influence on tick salivary compounds on the gut microbiota composition in the zebrafish (Danio rerio) animal model. Sequencing of 16 S rDNA was performed in a total of 75 zebrafish intestine samples, representing different treatment groups: PBS control, Ixodes ricinus tick saliva, tick saliva non-protein fraction (NPF), tick saliva protein fraction (PF), and tick saliva protein fractions 1-5 with NPF (F1-5). The results revealed that treatment with tick saliva and different tick salivary fractions, combined with α-Gal-positive dog food feeding, resulted in specific variations in zebrafish gut microbiota composition at various taxonomic levels and affected commensal microbial alpha and beta diversities. Metagenomics results were corroborated by qPCR, supporting the overrepresentation of phylum Firmicutes in the tick saliva group, phylum Fusobacteriota in group F1, and phylum Cyanobacteria in F2 and F5 compared to the PBS-control. qPCRs results at genus level sustained significant enrichment of Plesiomonas spp. in groups F3 and F5, Rhizobium spp. in NPF and F4, and Cloacibacterium spp. dominance in the PBS control group. This study provides new results on the role of gut microbiota in allergic reactions to tick saliva components using a zebrafish model of AGS. Overall, gut microbiota composition in response to tick saliva biomolecules may be associated with allergic reactions to mammalian meat consumption in AGS.

2.
Exp Appl Acarol ; 91(4): 661-679, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37973690

RESUMO

Ectoparasites, such as ticks, modulate host population dynamics by impacting demographic traits. They transmit infectious agents among their hosts, posing a critical threat to animal and public health. This study aimed to characterize and analyze the Hyalomma aegyptium infestation on one of its main hosts, the spur-thighed tortoise, its effects on demographic traits, and to determine the diversity of infectious agents present in both ticks and tortoises in the Maamora forest (northwestern Morocco). Our results show that 100% of the tortoises were parasitized by adult ticks in spring, an infestation intensity of 4 ticks/tortoise (5.1 and 3.6 ticks/tortoise in males and females, respectively; 4.2 and 3.3 ticks/tortoise in gravid and non-gravid females, respectively) and an abundance ranging from 1 to 12. Although without significant differences, male tortoises had higher tick abundances than females. The interaction of tortoise sex and body condition was significantly related to tick abundance, male body condition decreased with higher tick abundance in contrast to females. Nevertheless, the interaction of body condition and reproductive stage of females was not significantly related to tick abundance. Gravid females were significantly associated with tick abundance, showing a slightly higher infestation than non-gravid females. Molecular analysis of pooled tick samples revealed the presence of Ehrlichia ewingii, Candidatus Midichloria mitochondrii, and Rickettsia africae, with a minimum infection rate of 0.61 to 1.84%. However, blood sample analysis of the tortoises was infectious agent-free, pinpointing a lack of significant health problems. Given the possible effect on the transmission of zoonotic diseases by spur-thighed tortoises associated with their frequent collection as pets, it should be surveyed to control possible human health problems. In conservation terms, as a long-lived species, the role of tick infestation in demographic traits might be included in the management and conservation programs of spur-thighed tortoises.


Assuntos
Infestações por Carrapato , Carrapatos , Tartarugas , Feminino , Masculino , Animais , Humanos , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/parasitologia , Projetos Piloto , Dinâmica Populacional
3.
Biomed Pharmacother ; 168: 115829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37922649

RESUMO

The alpha-Gal syndrome (AGS) is a tick-borne allergy. A multi-omics approach was used to determine the effect of tick saliva and mammalian meat consumption on zebrafish gut transcriptome and proteome. Bioinformatics analysis using R software was focused on significant biological and metabolic pathway changes associated with AGS. Ortholog mapping identified highly concordant human ortholog genes for the detection of disease-enriched pathways. Tick saliva treatment increased zebrafish mortality, incidence of hemorrhagic type allergic reactions and changes in behavior and feeding patterns. Transcriptomics analysis showed downregulation of biological and metabolic pathways correlated with anti-alpha-Gal IgE and allergic reactions to tick saliva affecting blood circulation, cardiac and vascular smooth muscle contraction, behavior and sensory perception. Disease enrichment analysis revealed downregulated orthologous genes associated with human disorders affecting nervous, musculoskeletal, and cardiovascular systems. Proteomics analysis revealed suppression of pathways associated with immune system production of reactive oxygen species and cardiac muscle contraction. Underrepresented proteins were mainly linked to nervous and metabolic human disorders. Multi-omics data revealed inhibition of pathways associated with adrenergic signaling in cardiomyocytes, and heart and muscle contraction. Results identify tick saliva-related biological pathways supporting multisystemic organ involvement and linking α-Gal sensitization with other illnesses for the identification of potential disease biomarkers.


Assuntos
Fenômenos Biológicos , Hipersensibilidade Alimentar , Carrapatos , Animais , Humanos , Peixe-Zebra , Saliva , Multiômica , Mamíferos
4.
Ann Med ; 55(2): 2286531, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38010429

RESUMO

OBJECTIVE: Vector-borne diseases are a growing burden worldwide. In particular, the risks of allergic reactions to bites are associated with growing arthropod populations in contact with the public. The diversity of allergic reactions associated with host and arthropod factors difficult disease diagnosis, prognosis and prevention. Therefore, arthropod-associated allergies are underdiagnosed and require better surveillance of arthropod populations and disease diagnosis and management. METHODS: To face these challenges, in this study, we describe five cases to illustrate arthropod-associated allergies with different symptomatology, including alpha-gal syndrome (AGS) associated with anti-alpha-gal IgE antibody titres. Information on symptoms in response to arthropod bites was collected from patients and medical doctors. RESULTS: The five cases included patients bitten by a robber fly and different tick species. Cases were in Spain or U.S.A. Two cases were diagnosed with AGS and one case was diagnosed with anaphylaxis in response to tick bite with high anti-alpha-gal IgE levels. The symptoms in response to arthropod bites vary between different cases. CONCLUSION: Allergic reactions and symptoms in response to arthropod bites vary in association with host and arthropod factors. Herein we propose recommendations to control allergic symptoms, associated disease risk factors and the way forward to advance in the prevention and control of arthropod-associated allergies.


Assuntos
Anafilaxia , Artrópodes , Hipersensibilidade Alimentar , Animais , Humanos , Imunoglobulina E , Hipersensibilidade Alimentar/epidemiologia , Hipersensibilidade Alimentar/etiologia , Anafilaxia/etiologia , Anafilaxia/complicações
5.
Parasit Vectors ; 16(1): 242, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468955

RESUMO

BACKGROUND: Alpha-Gal syndrome (AGS) is a tick-borne food allergy caused by IgE antibodies against the glycan galactose-alpha-1,3-galactose (α-Gal) present in glycoproteins and glycolipids from mammalian meat. To advance in the diagnosis and treatment of AGS, further research is needed to unravel the molecular and immune mechanisms underlying this syndrome. The objective of this study is the characterization of tick salivary components and proteins with and without α-Gal modifications involved in modulating human immune response against this carbohydrate. METHODS: Protein and α-Gal content were determined in tick saliva components, and proteins were identified by proteomics analysis of tick saliva fractions. Pathophysiological changes were recorded in the zebrafish (Danio rerio) model after exposure to distinct Ixodes ricinus tick salivary components. Serum samples were collected from zebrafish at day 8 of exposure to determine anti-α-Gal, anti-glycan, and anti-tick saliva protein IgM antibody titers by enzyme-linked immunosorbent assay (ELISA). RESULTS: Zebrafish treated with tick saliva and saliva protein fractions combined with non-protein fractions demonstrated significantly higher incidence of hemorrhagic type allergic reactions, abnormal behavioral patterns, or mortality when compared to the phosphate-buffered saline (PBS)-treated control group. The main tick salivary proteins identified in these fractions with possible functional implication in AGS were the secreted protein B7P208-salivary antigen p23 and metalloproteases. Anti-α-Gal and anti-tick salivary gland IgM antibody titers were significantly higher in distinct saliva protein fractions and deglycosylated saliva group when compared with PBS-treated controls. Anti-glycan antibodies showed group-related profiles. CONCLUSIONS: Results support the hypothesis that tick salivary biomolecules with and without α-Gal modifications are involved in modulating immune response against this carbohydrate.


Assuntos
Hipersensibilidade Alimentar , Ixodes , Picadas de Carrapatos , Animais , Humanos , Peixe-Zebra/metabolismo , Saliva , Galactose , Imunoglobulina E , Hipersensibilidade Alimentar/etiologia , Proteínas de Artrópodes , Imunoglobulina M , Mamíferos
6.
Vector Borne Zoonotic Dis ; 23(9): 441-446, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37462912

RESUMO

Background: Lyme borreliosis (LB) caused by Borrelia burgdorferi sensu lato complex spirochetes is one of the tick-borne diseases with high prevalence and social/economic burden in the United States, Spain, and other European countries. The objective is to address limited information available about the incidence, prevalence, and symptoms of LB, current prevention, and treatment interventions that are not adequately focused and thus not very effective against this disease. Methods: To address these limitations, in this study, we used a citizen science approach to evaluate the LB-associated risks and implementation of control interventions in Spain. A total of 405 participants in the survey were included in the analysis. Responses to the questionnaire were received during January-July 2022. The questionnaire contained qualitative and quantitative questions. Homogeneity among binary variables was analyzed using a Fisher's exact test. Results: Despite limitations of the study associated with response to the questionnaire and information on tick species, the results evidenced the effect of factors such as age, gender, tick bites, disease clinical signs, comorbidities such as alpha-gal syndrome, health care services, and treatment effectiveness affecting LB. Conclusions: The main conclusions of the study highlight the need for better surveillance of tick infestations, pathogen infection, and diagnosis of LB and related comorbidities. To advance in disease prevention, diagnosis, and treatment, new interventions need to be developed and implemented in both public and private health care services. Providing access to these results to the society, health care system, and scientists is important to further advance in disease surveillance, diagnosis, control, and prevention.


Assuntos
Ciência do Cidadão , Ixodes , Doença de Lyme , Animais , Espanha/epidemiologia , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doença de Lyme/diagnóstico , Doença de Lyme/veterinária , Fatores de Risco
7.
J Funct Foods ; 101: 105412, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36644001

RESUMO

The aim of this study was to characterize serum protein biomarkers for nutritional status that may be used as predictors for disease symptomatology in COVID-19 patients before and after vaccination. In pre-vaccine cohorts, proteomics analysis revealed significant differences between groups, with serum proteins alpha-1-acid glycoproteins (AGPs) 1 and 2, C-reactive protein (CRP) and retinol binding protein (RBP) increasing with COVID-19 severity, in contrast with serum albumin, transthyretin (TTR) and serotransferrin (TF) reduction as the symptomatology increased. Immunoassay reproduced and validated proteomics results of serum proteins albumin and RBP. In post-vaccine cohorts, the results showed the same pattern as in pre-vaccine cohorts for serum proteins AGPs, CRP, albumin and TTR. However, TF levels were similar between groups and RBP presented a slight reduction as COVID-19 symptomatology increased. In these cohorts, immunoassay validated proteomics results of serum proteins albumin, TTR and TF. Additionally, immune response to α-Gal in pre-vaccine cohorts varied in predominant immunoglobulin type profile, while post-vaccine groups presented mainly anti-α-Gal protective IgG antibodies. The study identified serum nutritional biomarkers that could potentially predict an accurate prognostic of COVID-19 disease to provide an appropriate nutritional care and guidance in non-vaccinated and vaccinated individuals against SARS-CoV-2. These results highlight the importance of designing personalized nutrition protocols to improve diet along with the application of prebiotics or probiotics for the control of COVID-19 and other infectious diseases.

8.
Eur J Immunol ; 53(4): e2250206, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36658749

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a challenge for biomedicine and public health. To advance the development of effective diagnostic, prognostic, and preventive interventions, our study focused on high-throughput antibody binding epitope mapping of the SARS-CoV-2 spike RBD protein by IgA, IgM and IgG antibodies in saliva and sera of different cohorts from healthy uninfected individuals to SARS-CoV-2-infected unvaccinated and vaccinated asymptomatic, recovered, nonsevere, and severe patients. Identified candidate diagnostic (455-LFRKSNLKPFERD-467), prognostic (395-VYADSFVIRGDEV-407-C-KLH, 332-ITNLCPFGEV-342-C-KLH, 352-AWNRKRI-358-C-KLH, 524-VCGPKKSTNLVKN-536-KLH), and protective (MKLLE-487-NCYFPLQSYGFQPTNGVG-504-GGGGS-446-GGNYNYLYRLFRKSNLKPFERD-467) epitopes were validated with sera from prevaccine and postvaccine cohorts. The results identified neutralizing epitopes and support that antibody recognition of linear B-cell epitopes in RBD protein is associated with antibody isotype and disease symptomatology. The findings in asymptomatic individuals suggest a role for anti-RBD antibodies in the protective response against SARS-CoV-2. The possibility of translating results into diagnostic interventions for the early diagnosis of asymptomatic individuals and prognosis of disease severity provides new tools for COVID-19 surveillance and evaluation of risks in hospitalized patients. These results, together with other approaches, may contribute to the development of new vaccines for the control of COVID-19 and other coronavirus-related diseases using a quantum vaccinomics approach through the combination of protective epitopes.


Assuntos
COVID-19 , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/diagnóstico , Mapeamento de Epitopos , Epitopos de Linfócito B , SARS-CoV-2
9.
Molecules ; 27(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36144669

RESUMO

In the last two years, the coronavirus disease 19 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a scientific and social challenge worldwide. Vaccines have been the most effective intervention for reducing virus transmission and disease severity. However, genetic virus variants are still circulating among vaccinated individuals with different disease symptomatology. Understanding the protective- or disease-associated mechanisms in vaccinated individuals is relevant to advances in vaccine development and implementation. To address this objective, serum-protein profiles were characterized by quantitative proteomics and data-analysis algorithms in four cohorts of uninfected and SARS-CoV-2-infected vaccinated individuals with asymptomatic, non-severe, and severe disease symptomatology. The results show that immunoglobulins were the most overrepresented proteins in infected cohorts when compared to PCR-negative individuals. The immunoglobulin profile varied between different infected cohorts and correlated with protective- or disease-associated capacity. Overrepresented immunoglobulins in PCR-positive individuals correlated with protective response against SARS-CoV-2, other viruses, and thrombosis in asymptomatic cases. In non-severe cases, correlates of protection against SARS-CoV-2 and HBV together with risk of myasthenia gravis and allergy and autoantibodies were observed. Patients with severe symptoms presented risk for allergy, chronic idiopathic thrombocytopenic purpura, and autoantibodies. The analysis of underrepresented immunoglobulins in PCR-positive compared to PCR-negative individuals identified vaccine-induced protective epitopes in various coronavirus proteins, including the spike receptor-binding domain RBD. Non-immunoglobulin proteins were associated with COVID-19 symptoms and biological processes. These results evidence host-associated differences in response to vaccination and the possibility of improving vaccine efficacy against SARS-CoV-2.


Assuntos
COVID-19 , Hipersensibilidade , Vacinas Virais , Autoanticorpos , COVID-19/prevenção & controle , Epitopos , Humanos , Proteômica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
10.
Ticks Tick Borne Dis ; 13(6): 102034, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041296

RESUMO

Tick infestation and pathogen prevalence in ticks infesting the Saharan antelope addax (Addax nasomaculatus) are factors that may constitute a risk for both human and animal health. In this study we describe season distribution of adult Hyalomma marginatum and analyzed the tick-borne pathogens and their seroprevalence in natural-living addax in Morocco. The results showed that addax is an important host species for H. marginatum adults. The seroprevalence of Bluetongue virus (BTV; 61.5-92.3%, n = 8/13-84/91), Coxiella burnetii (36.3-69.2%, n = 33/91-9/13) and Brucella spp. (0.0-4.8%, n = 0/50-2/42) was characterized in addax during various years (sampled animals per year, n = 13-91). Presence of Aigai virus (AIGV), a recent taxonomic differentiation of Crimean-Congo hemorrhagic fever virus (CCHFV) of 100% (4/4, years 2016 and 2017) together with Babesia ovis (75%, 3/4, year 2014), Anaplasma spp. (75%, 3/4, year 2014), Rickettsia spp. (50%, 2/4, year 2014) and Theileria spp. (25%, 1/4, year 2014) was observed in H. marginatum collected from the addax (4 pools of 10 adult ticks each). The results support the role of addax host in H. marginatum life cycle and exposure to AIGV and other tick-borne pathogens. The development of control interventions including anti-tick vaccines for wildlife species will contribute to the implementation of effective measures for the prevention and control of tick-borne diseases and might be relevant for the preservation of this threatened species and others such as Arabian oryx (Oryx leucoryx) and African elk (Taurotragus oryx) that share habitat.

11.
J Asthma Allergy ; 15: 957-970, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35879928

RESUMO

The α-Gal syndrome (AGS) is a pathognomonic immunoglobulin E (IgE)-mediated delayed anaphylaxis in foods containing the oligosaccharide galactose-α-1,3-galactose (α-Gal) such as mammalian meat or dairy products. Clinical presentation of AGS can also comprise immediate hypersensitivity due to anticancer therapy, gelatin-containing vaccines or mammalian serum-based antivenom. The IgE initial sensitization is caused by hard-bodied tick bites and symptomatic individuals typically develop delayed pruritus, urticaria, angioedema, anaphylaxis, malaise or gut-related symptoms. Due to inapparent presentation, delayed reactions and a wide variety of patients´ clinical history, the AGS diagnosis and treatment remain challenging. This review covers not only current diagnostic methods used for AGS such as the skin prick test (SPT), the oral food challenge (OFC), anti-α-Gal IgE levels measurement and the basophil activation test (BAT), but also potentially relevant next-generation diagnostic tools like the mast cell activation test (MAT), the histamine-release (HR) assay, omics technologies and model-based reasoning (MBR). Moreover, it focuses on the therapeutical medical and non-medical methods available and current research methods that are being applied in order to elucidate the molecular, physiological and immune mechanisms underlying this allergic disorder. Lastly, future treatment and preventive tools are also discussed, being of utmost importance for the identification of tick salivary molecules, with or without α-Gal modifications, that trigger IgE sensitivity as they could be the key for further vaccine development. Bearing in mind climate change, the tick-host paradigm will shift towards an increasing number of AGS cases in new regions worldwide, which will pose new challenges for clinicians in the future.

12.
Sci Total Environ ; 844: 157241, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35817121

RESUMO

Air pollution and associated particulate matter (PM) affect environmental and human health worldwide. The intense vehicle usage and the high population density in urban areas are the main causes of this public health impact. Epidemiological studies have provided evidence on the effect of air pollution on airborne SARS-CoV-2 transmission and COVID-19 disease prevalence and symptomatology. However, the causal relationship between air pollution and COVID-19 is still under investigation. Based on these results, the question addressed in this study was how long SARS-CoV-2 survives on the surface of PM from different origin to evaluate the relationship between fuel and atmospheric pollution and virus transmission risk. The persistence and viability of SARS-CoV-2 virus was characterized in 5 engine exhaust PM and 4 samples of atmospheric PM10. The results showed that SARS-CoV-2 remains on the surface of PM10 from air pollutants but interaction with engine exhaust PM inactivates the virus. Consequently, atmospheric PM10 levels may increase SARS-CoV-2 transmission risk thus supporting a causal relationship between these factors. Furthermore, the relationship of pollution PM and particularly engine exhaust PM with virus transmission risk and COVID-19 is also affected by the impact of these pollutants on host oxidative stress and immunity. Therefore, although fuel PM inactivates SARS-CoV-2, the conclusion of the study is that both atmospheric and engine exhaust PM negatively impact human health with implications for COVID-19 and other diseases.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , COVID-19/epidemiologia , Humanos , Material Particulado/análise , SARS-CoV-2 , Emissões de Veículos
13.
Vet Res ; 53(1): 31, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436975

RESUMO

Trained immunity is the capacity of innate immune cells to produce an improved response against a secondary infection after a previous unrelated infection. Salmonellosis represents a public health issue and affects the pig farming industry. In general, vaccination against salmonellosis is still facing problems regarding the control of distinct serovars. Therefore, we hypothesized that an immunostimulant based on heat inactivated Mycobacterium bovis (HIMB) could have an immune training effect in pigs challenged with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) and decided to explore the amplitude of this non-specific immune response. For this purpose, twenty-four 10 days-old female piglets were randomly separated in three groups: immunized group (n = 10) received orally two doses of HIMB prior to the intratracheal S. Choleraesuis-challenge, positive control group (n = 9) that was only challenged with S. Choleraesuis, and negative control group (n = 5) that was neither immunized nor infected. All individuals were necropsied 21 days post-challenge. HIMB improved weight gain and reduced respiratory symptoms and pulmonary lesions caused by S. Choleraesuis in pigs. Pigs immunized with HIMB showed higher cytokine production, especially of serum TNFα and lung CCL28, an important mediator of mucosal trained immunity. Moreover, immunized pigs showed lower levels of the biomarker of lipid oxidation malondialdehyde and higher activity of the antioxidant enzyme superoxide dismutase than untreated challenged pigs. However, the excretion and tissue colonization of S. Choleraesuis remained unaffected. This proof-of-concept study suggests beneficial clinical, pathological, and heterologous immunological effects against bacterial pathogens within the concept of trained immunity, opening avenues for further research.


Assuntos
Mycobacterium bovis , Salmonelose Animal , Salmonella enterica , Doenças dos Suínos , Animais , Feminino , Temperatura Alta , Salmonella , Salmonelose Animal/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA