Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 23(3): 291-303, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19204116

RESUMO

A DNA double-strand break (DSB) is repaired by gene conversion (GC) if both ends of the DSB share homology with an intact DNA sequence. However, if homology is limited to only one of the DSB ends, repair occurs by break-induced replication (BIR). It is not known how the homology status of the DSB ends is first assessed and what other parameters govern the choice between these repair pathways. Our data suggest that a "recombination execution checkpoint" (REC) regulates the choice of the homologous recombination pathway employed to repair a given DSB. This choice is made prior to the initiation of DNA synthesis, and is dependent on the relative position and orientation of the homologous sequences used for repair. The RecQ family helicase Sgs1 plays a key role in regulating the choice of the recombination pathway. Surprisingly, break repair and gap repair are fundamentally different processes, both kinetically and genetically, as Pol32 is required only for gap repair. We propose that the REC may have evolved to preserve genome integrity by promoting conservative repair, especially when a DSB occurs within a repeated sequence.


Assuntos
Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA Fúngico/genética , DNA Fúngico/metabolismo , Recombinação Genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quebras de DNA de Cadeia Dupla , Replicação do DNA , Evolução Molecular , Conversão Gênica , Cinética , Modelos Biológicos , Modelos Genéticos , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO J ; 27(10): 1502-12, 2008 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-18418382

RESUMO

Cells respond to DNA double-strand breaks (DSBs) and uncapped telomeres by recruiting checkpoint and repair factors to the site of lesions. Single-stranded DNA (ssDNA) is an important intermediate in the repair of DSBs and is produced also at uncapped telomeres. Here, we provide evidence that binding of the checkpoint protein Rad9, through its Tudor domain, to methylated histone H3-K79 inhibits resection at DSBs and uncapped telomeres. Loss of DOT1 or mutations in RAD9 influence a Rad50-dependent nuclease, leading to more rapid accumulation of ssDNA, and faster activation of the critical checkpoint kinase, Mec1. Moreover, deletion of RAD9 or DOT1 partially bypasses the requirement for CDK1 in DSB resection. Interestingly, Dot1 contributes to checkpoint activation in response to low levels of telomere uncapping but is not essential with high levels of uncapping. We suggest that both Rad9 and histone H3 methylation allow transmission of the damage signal to checkpoint kinases, and keep resection of damaged DNA under control influencing, both positively and negatively, checkpoint cascades and contributing to a tightly controlled response to DNA damage.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/antagonistas & inibidores , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Telômero/metabolismo , Proteínas de Ciclo Celular/genética , Ativação Enzimática , Deleção de Genes , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Metilação , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
3.
Curr Biol ; 14(23): 2096-106, 2004 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-15589151

RESUMO

BACKGROUND: Unrepaired DNA double-stranded breaks (DSBs) can result in the whole or partial loss of chromosomes. Previously, we showed that the ends of broken chromosomes remain associated. Here, we have examined the machinery that holds broken chromosome ends together, and we have explored the behavior of broken chromosomes as they pass through mitosis. RESULTS: Using GFP-localized arrays flanking an HO endonuclease site, we examined the association of broken chromosome ends in yeast cells that are checkpoint-arrested in metaphase. This association is partially dependent upon Rad50 and Rad52. After 6-8 hr, cells adapted to the checkpoint and resumed mitosis, segregating the broken chromosome. When this occurred, we found that the acentric fragments cosegregated into either the mother or daughter cell 95% of the time. Similarly, pedigree analysis showed that postmitotic repair of a broken chromosome (rejoining the centric and acentric fragments) occurred in either the mother or daughter cell, but rarely both, consistent with a model in which both acentric sister chromatid fragments are passaged into the same nucleus. CONCLUSIONS: These data suggest two related phenomena: an intrachromosomal association that holds the halves of a single broken sister chromatid together in metaphase and an interchromosomal force that tethers broken sister chromatids to each other and promotes their missegregation. Strikingly, the interchromosomal association of DNA breaks also promotes the missegregation of centromeric chromosomal fragments, albeit to a lesser extent than acentric fragments. The DNA break-induced missegregation of acentric and centric chromosome fragments provides a novel mechanism for the loss of heterozygosity that precedes tumorigenesis in mammalian cells.


Assuntos
Quebra Cromossômica/fisiologia , Segregação de Cromossomos/fisiologia , Reparo do DNA/fisiologia , Instabilidade Genômica/fisiologia , Mitose/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/fisiologia , Proteínas de Fluorescência Verde , Microscopia de Fluorescência , Mitose/genética , Plasmídeos/genética , Proteína Rad52 de Recombinação e Reparo de DNA , Fuso Acromático/fisiologia , Leveduras
4.
Mol Cell Biol ; 23(23): 8913-23, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14612428

RESUMO

Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.


Assuntos
Proteínas de Ciclo Celular , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Ciclo Celular , Quinase do Ponto de Checagem 2 , Reparo do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Epistasia Genética , Genes Fúngicos , Mutação , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteína Rad52 de Recombinação e Reparo de DNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
5.
Mol Cell ; 11(3): 827-35, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12667463

RESUMO

Saccharomyces cells suffering a DNA double-strand break (DSB) ultimately escape checkpoint-mediated G2/M arrest either by recovery once the lesion is repaired or by adaptation if the lesion proves irreparable. Cells lacking the PP2C-like phosphatases Ptc2 and Ptc3 are unable to adapt to a HO-induced DSB and are also defective in recovering from a repairable DSB. In contrast, overexpression of PTC2 rescues adaptation-defective yku80Delta and cdc5-ad mutants. These effects are not explained by alterations either in the processing of DSB ends or in DSB repair. In vivo and in vitro evidence suggests that phosphorylated forms of Ptc2 and Ptc3 specifically bind to the Rad53 FHA1 domain and inactivate Rad53-dependent pathways during adaptation and recovery by dephosphorylating Rad53.


Assuntos
Dano ao DNA , DNA/metabolismo , Proteínas de Membrana/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Monoéster Fosfórico Hidrolases , Proteínas de Saccharomyces cerevisiae , Proteínas de Ciclo Celular/metabolismo , Quinase do Ponto de Checagem 2 , Fase G2 , Glutationa Transferase/metabolismo , Cinética , Proteínas de Membrana/genética , Mitose , Mutação , Fosfoproteínas Fosfatases/genética , Fosforilação , Plasmídeos/metabolismo , Proteína Fosfatase 2 , Proteína Fosfatase 2C , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
6.
Mol Cell ; 10(2): 373-85, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12191482

RESUMO

In Saccharomyces strains in which homologous recombination is delayed sufficiently to activate the DNA damage checkpoint, Rad53p checkpoint kinase activity appears 1 hr after DSB induction and disappears soon after completion of repair. Cells lacking Srs2p helicase fail to recover even though they apparently complete DNA repair; Rad53p kinase remains activated. srs2Delta cells also fail to adapt when DSB repair is prevented. The recovery defect of srs2Delta is suppressed in mec1Delta strains lacking the checkpoint or when DSB repair occurs before checkpoint activation. Permanent preanaphase arrest of srs2Delta cells is reversed by the addition of caffeine after cells have arrested. Thus, in addition to its roles in recombination, Srs2p appears to be needed to turn off the DNA damage checkpoint.


Assuntos
Proteínas de Ciclo Celular , Ciclo Celular , Dano ao DNA , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Adaptação Fisiológica , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Citometria de Fluxo , Conversão Gênica , Deleção de Genes , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Rad51 Recombinase , Proteína Rad52 de Recombinação e Reparo de DNA , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA