Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 12(2): 2272638, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37850324

RESUMO

Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Bordetella pertussis/metabolismo , Fator sigma/genética , Cromatografia Líquida , Inteligência Artificial , Espectrometria de Massas em Tandem , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
2.
Front Cell Infect Microbiol ; 13: 943390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816586

RESUMO

Apart from oxygenic photosynthesis, the extent of manganese utilization in bacteria varies from species to species and also appears to depend on external conditions. This observation is in striking contrast to iron, which is similar to manganese but essential for the vast majority of bacteria. To adequately explain the role of manganese in pathogens, we first present in this review that the accumulation of molecular oxygen in the Earth's atmosphere was a key event that linked manganese utilization to iron utilization and put pressure on the use of manganese in general. We devote a large part of our contribution to explanation of how molecular oxygen interferes with iron so that it enhances oxidative stress in cells, and how bacteria have learned to control the concentration of free iron in the cytosol. The functioning of iron in the presence of molecular oxygen serves as a springboard for a fundamental understanding of why manganese is so valued by bacterial pathogens. The bulk of this review addresses how manganese can replace iron in enzymes. Redox-active enzymes must cope with the higher redox potential of manganese compared to iron. Therefore, specific manganese-dependent isoenzymes have evolved that either lower the redox potential of the bound metal or use a stronger oxidant. In contrast, redox-inactive enzymes can exchange the metal directly within the individual active site, so no isoenzymes are required. It appears that in the physiological context, only redox-inactive mononuclear or dinuclear enzymes are capable of replacing iron with manganese within the same active site. In both cases, cytosolic conditions play an important role in the selection of the metal used. In conclusion, we summarize both well-characterized and less-studied mechanisms of the tug-of-war for manganese between host and pathogen.


Assuntos
Bactérias , Manganês , Manganês/metabolismo , Bactérias/metabolismo , Metais/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo
3.
Emerg Microbes Infect ; 12(1): e2146536, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36357372

RESUMO

Bordetella pertussis, the causative agent of whooping cough, is an extracellular, strictly human pathogen. However, it has been shown that B. pertussis cells can escape phagocytic killing and survive in macrophages upon internalization. Our time-resolved RNA-seq data suggest that B. pertussis efficiently adapts to the intramacrophage environment and responds to host bactericidal activities. We show that this adaptive response is multifaceted and, surprisingly, related to the BvgAS two-component system, a master regulator of virulence. Our results show that the expression of this regulatory circuit is downregulated upon internalization. Moreover, we demonstrate that the switch to the avirulent Bvg- phase augments a very complex process based on the adjustment of central and energy metabolism, cell wall reinforcement, maintenance of appropriate redox and metal homeostasis, and repair of damaged macromolecules. Nevertheless, not all observed effects could be simply attributed to the transition to Bvg- phase, suggesting that additional regulators are involved in the adaptation to the intramacrophage environment. Interestingly, a large number of genes required for the metabolism of sulphur were strongly modulated within macrophages. In particular, the mutant lacking two genes encoding cysteine dioxygenases displayed strongly attenuated cytotoxicity toward THP-1 cells. Collectively, our results suggest that intracellular B. pertussis cells have adopted the Bvg- mode to acclimate to the intramacrophage environment and respond to antimicrobial activities elicited by THP-1 cells. Therefore, we hypothesize that the avirulent phase represents an authentic phenotype of internalized B. pertussis cells.


Assuntos
Bordetella pertussis , Coqueluche , Humanos , Bordetella pertussis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenótipo , Macrófagos/metabolismo , Regulação Bacteriana da Expressão Gênica
4.
mBio ; 12(5): e0190221, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34700381

RESUMO

The ability of bacterial pathogens to acquire essential micronutrients is critical for their survival in the host environment. Manganese plays a complex role in the virulence of a variety of pathogens due to its function as an antioxidant and enzymatic cofactor. Therefore, host cells deprive pathogens of manganese to prevent or attenuate infection. Here, we show that evolution of the human-restricted pathogen Bordetella pertussis has selected for an inhibitory duplication within a manganese exporter of the calcium:cation antiporter superfamily. Intriguingly, upon exposure to toxic levels of manganese, the nonfunctional exporter becomes operative in resister cells due to a unique reverse adaptation mechanism. However, compared with wild-type (wt) cells, the resisters carrying a functional copy of the exporter displayed strongly reduced intracellular levels of manganese and impaired growth under oxidative stress. Apparently, inactivation of the manganese exporter and the resulting accumulation of manganese in the cytosol benefited the pathogen by improving its survival under stress conditions. The inhibitory duplication within the exporter gene is highly conserved among B. pertussis strains, absent from all other Bordetella species and from a vast majority of organisms across all kingdoms of life. Therefore, we conclude that inactivation of the exporter gene represents an exceptional example of a flexible genome decay strategy employed by a human pathogen to adapt to its exclusive host. IMPORTANCE Bordetella pertussis, a respiratory pathogen restricted to humans, continuously adapts its genome to its exclusive host. We show that speciation of this reemerging pathogen was accompanied by loss of function of the manganese exporter. Intriguingly, the functionality of the exporter can be restored in the presence of toxic levels of manganese by a unique genetic modification. However, compared with the wt strain, the strain carrying the functional exporter failed to resist the oxidative stress in vitro. Thus, our data demonstrate that inactivation of the exporter resulting in manganese accumulation assists B. pertussis in adaptation to oxidative stress. We conclude that this sophisticated process of reverse adaptation enables B. pertussis to adjust to rapidly changing environments by facilitating its resistance to both manganese toxicity and manganese scarcity.


Assuntos
Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/patogenicidade , Manganês/toxicidade , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella pertussis/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Humanos , Estresse Oxidativo , Virulência/efeitos dos fármacos , Fatores de Virulência/genética , Coqueluche/prevenção & controle
5.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450976

RESUMO

Bacterial pathogens sense specific cues associated with different host niches and integrate these signals to appropriately adjust the global gene expression. Bordetella pertussis is a Gram-negative, strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Though B. pertussis does not cause invasive infections, previous results indicated that this reemerging pathogen responds to blood exposure. Here, omics RNA-seq and LC-MS/MS techniques were applied to determine the blood-responsive regulon of B. pertussis. These analyses revealed that direct contact with blood rewired global gene expression profiles in B. pertussis as the expression of almost 20% of all genes was significantly modulated. However, upon loss of contact with blood, the majority of blood-specific effects vanished, with the exception of several genes encoding the T3SS-secreted substrates. For the first time, the T3SS regulator BtrA was identified in culture supernatants of B. pertussis. Furthermore, proteomic analysis identified BP2259 protein as a novel secreted T3SS substrate, which is required for T3SS functionality. Collectively, presented data indicate that contact with blood represents an important cue for B. pertussis cells.


Assuntos
Bordetella pertussis/fisiologia , Genômica , Proteômica , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo , Proteínas de Bactérias/metabolismo , Cromatografia Líquida , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genômica/métodos , Humanos , Anotação de Sequência Molecular , Proteômica/métodos , Espectrometria de Massas em Tandem , Transcriptoma , Virulência , Fatores de Virulência
6.
Emerg Infect Dis ; 27(1): 57-68, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33350934

RESUMO

Despite high vaccination coverage, pertussis is increasing in many industrialized countries, including the Czech Republic. To better understand Bordetella pertussis resurgence, we analyzed historic strains and recent clinical isolates by using a comparative omics approach. Whole-genome sequencing showed that historic and recent isolates of B. pertussis have substantial variation in genome organization and form separate phylogenetic clusters. Subsequent RNA sequence analysis and liquid chromatography with mass tandem spectrometry analyses showed that these variations translated into discretely separated transcriptomic and proteomic profiles. When compared with historic strains, recent isolates showed increased expression of flagellar genes and genes involved in lipopolysaccharide biosynthesis and decreased expression of polysaccharide capsule genes. Compared with reference strain Tohama I, all strains had increased expression and production of the type III secretion system apparatus. We detected the potential link between observed effects and insertion sequence element-induced changes in gene context only for a few genes.


Assuntos
Bordetella pertussis , Coqueluche , Bordetella pertussis/genética , República Tcheca , Humanos , Vacina contra Coqueluche , Filogenia , Proteômica , Coqueluche/epidemiologia
7.
mSystems ; 5(6)2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293402

RESUMO

The BvgS/BvgA two-component system controls expression of ∼550 genes of Bordetella pertussis, of which, ∼245 virulence-related genes are positively regulated by the BvgS-phosphorylated transcriptional regulator protein BvgA (BvgA∼P). We found that a single G-to-T nucleotide transversion in the 5'-untranslated region (5'-UTR) of the rplN gene enhanced transcription of the ribosomal protein operon and of the rpoA gene and provoked global dysregulation of B. pertussis genome expression. This comprised overproduction of the alpha subunit (RpoA) of the DNA-dependent RNA polymerase, downregulated BvgA and BvgS protein production, and impaired production and secretion of virulence factors by the mutant. Nonetheless, the mutant survived like the parental bacteria for >2 weeks inside infected primary human macrophages and persisted within infected mouse lungs for a longer period than wild-type B. pertussis These observations suggest that downregulation of virulence factor production by bacteria internalized into host cells may enable persistence of the whooping cough agent in the airways.IMPORTANCE We show that a spontaneous mutation that upregulates transcription of an operon encoding ribosomal proteins and causes overproduction of the downstream-encoded α subunit (RpoA) of RNA polymerase causes global effects on gene expression levels and proteome composition of Bordetella pertussis Nevertheless, the resulting important downregulation of the BvgAS-controlled expression of virulence factors of the whooping cough agent did not compromise its capacity to persist for prolonged periods inside primary human macrophage cells, and it even enhanced its capacity to persist in infected mouse lungs. These observations suggest that the modulation of BvgAS-controlled expression of virulence factors may occur also during natural infections of human airways by Bordetella pertussis and may possibly account for long-term persistence of the pathogen within infected cells of the airways.

8.
RNA Biol ; 17(5): 731-742, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32070192

RESUMO

Bordetella pertussis, a strictly human re-emerging pathogen and the causative agent of whooping cough, exploits a broad variety of virulence factors to establish efficient infection. Here, we used RNA sequencing to analyse the changes in gene expression profiles of human THP-1 macrophages resulting from B. pertussis infection. In parallel, we attempted to determine the changes in intracellular B. pertussis-specific transcriptomic profiles resulting from interaction with macrophages. Our analysis revealed that global gene expression profiles in THP-1 macrophages are extensively rewired 6 h post-infection. Among the highly expressed genes, we identified those encoding cytokines, chemokines, and transcription regulators involved in the induction of the M1 and M2 macrophage polarization programmes. Notably, several host genes involved in the control of apoptosis and inflammation which are known to be hijacked by intracellular bacterial pathogens were overexpressed upon infection. Furthermore, in silico analyses identified large temporal changes in expression of specific gene subsets involved in signalling and metabolic pathways. Despite limited numbers of the bacterial reads, we observed reduced expression of majority of virulence factors and upregulation of several transcriptional regulators during infection suggesting that intracellular B. pertussis cells switch from virulent to avirulent phase and actively adapt to intracellular environment, respectively.


Assuntos
Bordetella pertussis/fisiologia , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Macrófagos/metabolismo , Transcriptoma , Coqueluche/genética , Coqueluche/virologia , Linhagem Celular , Células Cultivadas , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Coqueluche/imunologia
9.
J Proteomics ; 211: 103559, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31669358

RESUMO

B. pertussis is the etiological agent of whooping cough, a highly contagious respiratory disease which remains uncontrolled worldwide. Understanding how this pathogen responds to the environmental changes and adapts to different niches found inside the host might contribute to gain insight into bacterial pathogenesis. Comparative analyses of previous transcriptomic and proteomic data suggested that post-transcriptional regulatory mechanisms modulate B. pertussis virulence in response to iron availability. Iron scarcity represents one of the major stresses faced by bacterial pathogens inside the host. In this study, we used gel-free nanoLC-MS/MS-based proteomics to investigate whether Hfq, a highly conserved post-transcriptional regulatory protein, is involved in B. pertussis adaptation to low iron environment. To this end, we compared the protein profiles of wild type B. pertussis and its isogenic hfq deletion mutant strain under iron-replete and iron-depleted conditions. Almost of 33% of the proteins identified under iron starvation was found to be Hfq-dependent. Among them, proteins involved in oxidative stress tolerance and virulence factors that play a key role in the early steps of host colonization and bacterial persistence inside the host cells. Altogether these results suggest that Hfq shapes the infective phenotype of B. pertussis. SIGNIFICANCE: In the last years, it became evident that post-transcriptional regulation of gene expression in ba cteria plays a central role in host-pathogen interactions. Hfq is a bacterial protein that regulates gene expression at post-transcriptional level found pivotal in the establishment of successful infections. In this study, we investigated the role of Hfq in Bordetella pertussis response to iron starvation, one of the main stresses imposed by the host. The data demonstrate that Hfq regulates the abundance of a significant number of B. pertussis proteins in response to iron starvation. Among them, virulence factors and proteins involved in oxidative stress tolerance, key players in host colonization and intracellular bacterial survival. Altogether, our results suggest a relevant role of Hfq in B. pertussis adaptation to the different niches found inside the host eventually granting bacterial pathogenesis.


Assuntos
Bordetella pertussis , Proteômica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bordetella pertussis/metabolismo , Regulação Bacteriana da Expressão Gênica , Espectrometria de Massas em Tandem , Virulência , Fatores de Virulência
10.
Int J Mol Sci ; 20(12)2019 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-31238496

RESUMO

Bordetella pertussis is a Gram-negative strictly human pathogen of the respiratory tract and the etiological agent of whooping cough (pertussis). Previously, we have shown that RNA chaperone Hfq is required for virulence of B. pertussis. Furthermore, microarray analysis revealed that a large number of genes are affected by the lack of Hfq. This study represents the first attempt to characterize the Hfq regulon in bacterial pathogen using an integrative omics approach. Gene expression profiles were analyzed by RNA-seq and protein amounts in cell-associated and cell-free fractions were determined by LC-MS/MS technique. Comparative analysis of transcriptomic and proteomic data revealed solid correlation (r2 = 0.4) considering the role of Hfq in post-transcriptional control of gene expression. Importantly, our study confirms and further enlightens the role of Hfq in pathogenicity of B. pertussis as it shows that Δhfq strain displays strongly impaired secretion of substrates of Type III secretion system (T3SS) and substantially reduced resistance to serum killing. On the other hand, significantly increased production of proteins implicated in transport of important metabolites and essential nutrients observed in the mutant seems to compensate for the physiological defect introduced by the deletion of the hfq gene.


Assuntos
Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Proteômica , Regulon , Cromatografia Líquida , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Fator Proteico 1 do Hospedeiro/metabolismo , Humanos , Proteoma , Proteômica/métodos , Espectrometria de Massas em Tandem , Transcriptoma , Sistemas de Secreção Tipo III/genética , Sistemas de Secreção Tipo III/metabolismo
11.
Pathog Dis ; 76(7)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30184175

RESUMO

Bordetella pertussis is a strictly human pathogen causing the respiratory infectious disease called whooping cough or pertussis. B. pertussis adaptation to acellular pertussis vaccine pressure has been repeatedly highlighted, but recent data indicate that adaptation of circulating strains started already in the era of the whole cell pertussis vaccine (wP) use. We sequenced the genomes of five B. pertussis wP vaccine strains isolated in the former Czechoslovakia in the pre-wP (1954-1957) and early wP (1958-1965) eras, when only limited population travel into and out of the country was possible. Four isolates exhibit a similar genome organization and form a distinct phylogenetic cluster with a geographic signature. The fifth strain is rather distinct, both in genome organization and SNP-based phylogeny. Surprisingly, despite isolation of this strain before 1966, its closest sequenced relative appears to be a recent isolate from the US. On the genome content level, the five vaccine strains contained both new and already described regions of difference. One of the new regions contains duplicated genes potentially associated with transport across the membrane. The prevalence of this region in recent isolates indicates that its spread might be associated with selective advantage leading to increased strain fitness.


Assuntos
Bordetella pertussis/genética , Genômica , Vacina contra Coqueluche/genética , Bordetella pertussis/isolamento & purificação , República Tcheca , Tchecoslováquia , Ordem dos Genes , Variação Genética , Humanos , Sequenciamento Completo do Genoma
12.
PLoS One ; 13(8): e0203204, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30161230

RESUMO

Bordetella pertussis, the causative agent of whooping cough, has the capability to survive inside the host cells. This process requires efficient adaptation of the pathogen to the intracellular environment and the associated stress. Among the proteins produced by the intracellular B. pertussis we identified a protein (BP0414) that shares homology with MgtC, a protein which was previously shown to be involved in the intracellular survival of other pathogens. To explore if BP0414 plays a role in B. pertussis intracellular survival a mutant strain defective in the production of this protein was constructed. Using standard in vitro growth conditions we found that BP0414 is required for B. pertussis growth under low magnesium availability or low pH, two environmental conditions that this pathogen might face within the host cell. Intracellular survival studies showed that MgtC is indeed involved in B. pertussis viability inside the macrophages. The use of bafilomycin A1, which inhibits phagosome acidification, abolished the survival defect of the mgtC deficient mutant strain suggesting that in intracellular B. pertussis the role of MgtC protein is mainly related to the bacterial adaptation to the acidic conditions found inside the of phagosomes. Overall, this work provides an insight into the importance of MgtC in B. pertussis pathogenesis and its contribution to bacterial survival within immune cells.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis/metabolismo , Proteínas de Bactérias/genética , Bordetella pertussis/efeitos dos fármacos , Bordetella pertussis/genética , Bordetella pertussis/crescimento & desenvolvimento , Cátions Bivalentes/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli , Humanos , Concentração de Íons de Hidrogênio , Macrolídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Macrófagos/patologia , Magnésio/metabolismo , Mutação , Homologia de Sequência de Aminoácidos , Células THP-1
13.
RNA ; 24(11): 1530-1541, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30097543

RESUMO

Bordetella pertussis is the causative agent of human whooping cough, a highly contagious respiratory disease which despite vaccination programs remains the major cause of infant morbidity and mortality. The requirement of the RNA chaperone Hfq for virulence of B. pertussis suggested that Hfq-dependent small regulatory RNAs are involved in the modulation of gene expression. High-throughput RNA sequencing revealed hundreds of putative noncoding RNAs including the RgtA sRNA. Abundance of RgtA is strongly decreased in the absence of the Hfq protein and its expression is modulated by the activities of the two-component regulatory system BvgAS and another response regulator RisA. Whereas RgtA levels were elevated under modulatory conditions or in the absence of bvg genes, deletion of the risA gene completely abolished RgtA expression. Profiling of the ΔrgtA mutant in the ΔbvgA genetic background identified the BP3831 gene encoding a periplasmic amino acid-binding protein of an ABC transporter as a possible target gene. The results of site-directed mutagenesis and in silico analysis indicate that RgtA base-pairs with the region upstream of the start codon of the BP3831 mRNA and thereby weakens the BP3831 protein production. Furthermore, our data suggest that the function of the BP3831 protein is related to transport of glutamate, an important metabolite in the B. pertussis physiology. We propose that the BvgAS/RisA interplay regulates the expression of RgtA which upon infection, when glutamate might be scarce, attenuates translation of the glutamate transporter and thereby assists in adaptation of the pathogen to other sources of energy.


Assuntos
Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Glutamatos/metabolismo , Pequeno RNA não Traduzido/genética , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Humanos
14.
RNA Biol ; 15(7): 967-975, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29683387

RESUMO

Bordetella pertussis is the causative agent of whooping cough, a respiratory disease still considered as a major public health threat and for which recent re-emergence has been observed. Constant reshuffling of Bordetella pertussis genome organization was observed during evolution. These rearrangements are essentially mediated by Insertion Sequences (IS), a mobile genetic elements present in more than 230 copies in the genome, which are supposed to be one of the driving forces enabling the pathogen to escape from vaccine-induced immunity. Here we use high-throughput sequencing approaches (RNA-seq and differential RNA-seq), to decipher Bordetella pertussis transcriptome characteristics and to evaluate the impact of IS elements on transcriptome architecture. Transcriptional organization was determined by identification of transcription start sites and revealed also a large variety of non-coding RNAs including sRNAs, leaderless mRNAs or long 3' and 5'UTR including seven riboswitches. Unusual topological organizations, such as overlapping 5'- or 3'-extremities between oppositely orientated mRNA were also unveiled. The pivotal role of IS elements in the transcriptome architecture and their effect on the transcription of neighboring genes was examined. This effect is mediated by the introduction of IS harbored promoters or by emergence of hybrid promoters. This study revealed that in addition to their impact on genome rearrangements, most of the IS also impact on the expression of their flanking genes. Furthermore, the transcripts produced by IS are strain-specific due to the strain to strain variation in IS copy number and genomic context.


Assuntos
Bordetella pertussis/genética , Elementos de DNA Transponíveis/genética , Perfilação da Expressão Gênica , RNA Bacteriano/genética , Transcrição Gênica , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Genoma Bacteriano/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Mensageiro/genética , RNA não Traduzido/genética , Sítio de Iniciação de Transcrição
15.
J Biol Chem ; 292(19): 8048-8058, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28348085

RESUMO

Changes in environmental temperature represent one of the major stresses faced by microorganisms as they affect the function of the cytoplasmic membrane. In this study, we have analyzed the thermal adaptation in two closely related respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica Although B. pertussis represents a pathogen strictly adapted to the human body temperature, B. bronchiseptica causes infection in a broad range of animals and survives also outside of the host. We applied GC-MS to determine the fatty acids of both Bordetella species grown at different temperatures and analyzed the membrane fluidity by fluorescence anisotropy measurement. In parallel, we also monitored the effect of growth temperature changes on the expression and production of several virulence factors. In response to low temperatures, B. pertussis adapted its fatty acid composition and membrane fluidity to a considerably lesser extent when compared with B. bronchiseptica Remarkably, B. pertussis maintained the production of virulence factors at 24 °C, whereas B. bronchiseptica cells resumed the production only upon temperature upshift to 37 °C. This growth temperature-associated differential modulation of virulence factor production was linked to the phosphorylation state of transcriptional regulator BvgA. The observed differences in low-temperature adaptation between B. pertussis and B. bronchiseptica may result from selective adaptation of B. pertussis to the human host. We propose that the reduced plasticity of the B. pertussis membranes ensures sustained production of virulence factors at suboptimal temperatures and may play an important role in the transmission of the disease.


Assuntos
Aclimatação , Bordetella bronchiseptica/citologia , Bordetella pertussis/citologia , Membrana Celular/metabolismo , Temperatura , Anisotropia , Proteínas de Bactérias/metabolismo , Temperatura Corporal , Bordetella bronchiseptica/fisiologia , Bordetella pertussis/fisiologia , Citoplasma/metabolismo , Meio Ambiente , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Fosforilação , Transdução de Sinais , Especificidade da Espécie , Espectrometria de Fluorescência , Fatores de Transcrição/metabolismo , Virulência , Fatores de Virulência/metabolismo
16.
J Proteomics ; 136: 55-67, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26873878

RESUMO

Previous studies have shown that B. pertussis survives inside human macrophages in non-acidic compartments with characteristics of early endosomes. In order to gain new insight into the biology of B. pertussis survival in host cells, we have analyzed the adaptation of the bacterial proteome during intracellular infection. The proteome of B. pertussis 3 h and 48 h after infection of human macrophage-like THP-1 cells was examined by nano-liquid chromatography combined with tandem MS and compared to the protein profile of extracellular B. pertussis growing in the same cell culture medium. Compared with extracellular bacteria, almost 300 proteins out of 762 identified proteins displayed altered levels in intracellular B. pertussis. Functional analyses of the proteins displaying altered abundance revealed enrichment of proteins involved in stress response, iron uptake, cellular metabolism, transcriptional regulation, and virulence. To our knowledge, this is the first analysis of the B. pertussis proteome during adaptation to the intramacrophage environment and the data provide new clues for understanding B. pertussis adaptation and pathogenesis. BIOLOGICAL SIGNIFICANCE: B. pertussis is a respiratory pathogen that has adapted exclusively to the human host. Despite high vaccination rates, whooping cough remains a serious threat to human health and its incidence has been increasing in recent years in vaccinated populations. The mechanisms that allow this pathogen to evade immune clearance, persist in the host, and cause a prolonged paroxysmal cough are still poorly understood. Recent studies regarding B. pertussis survival inside host cells and the cellular response to this bacterial infection indicate that B. pertussis may have an intracellular phase during infection which probably contributes to persistence and vaccine failure. In this study we provide the first global proteome profile of B. pertussis within macrophages. The data provide novel insights into the adaptive responses elicited by these bacteria for physiological adaptation to the host environment.


Assuntos
Proteínas de Bactérias/metabolismo , Bordetella pertussis , Macrófagos/microbiologia , Proteoma/metabolismo , Bordetella pertussis/isolamento & purificação , Bordetella pertussis/metabolismo , Linhagem Celular Tumoral , Humanos
17.
RNA Biol ; 12(2): 175-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25674816

RESUMO

Bordetella pertussis, the causative agent of human whooping cough (pertussis) produces a complex array of virulence factors in order to establish efficient infection in the host. The RNA chaperone Hfq and small regulatory RNAs are key players in posttranscriptional regulation in bacteria and have been shown to play an essential role in virulence of a broad spectrum of bacterial pathogens. This study represents the first attempt to characterize the Hfq regulon of the human pathogen B. pertussis under laboratory conditions as well as upon passage in the host and indicates that loss of Hfq has a profound effect on gene expression in B. pertussis. Comparative transcriptional profiling revealed that Hfq is required for expression of several virulence factors in B. pertussis cells including the Type III secretion system (T3SS). In striking contrast to the wt strain, T3SS did not become operational in the hfq mutant passaged either through mice or macrophages thereby proving that Hfq is required for the functionality of the B. pertussis T3SS. Likewise, expression of virulence factors vag8 and tcfA encoding autotransporter and tracheal colonization factor, respectively, was strongly reduced in the hfq mutant. Importantly, for the first time we demonstrate that B. pertussis T3SS can be activated upon contact with macrophage cells in vitro.


Assuntos
Proteínas de Bactérias/genética , Bordetella pertussis/genética , Bordetella pertussis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , RNA Bacteriano/genética , Sistemas de Secreção Tipo III/genética , Animais , Proteínas de Bactérias/metabolismo , Infecções por Bordetella/microbiologia , Bordetella pertussis/metabolismo , Linhagem Celular , Perfilação da Expressão Gênica , Fator Proteico 1 do Hospedeiro/deficiência , Interações Hospedeiro-Patógeno , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , RNA Bacteriano/metabolismo , Regulon , Transcriptoma , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo , Fatores de Virulência de Bordetella/genética , Fatores de Virulência de Bordetella/metabolismo
18.
PLoS One ; 9(6): e98661, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24932523

RESUMO

The RNA chaperone Hfq acts as a central player in post-transcriptional gene regulation in several Gram-negative Bacteria, whereas comparatively little is known about its role in Gram-positive Bacteria. Here, we studied the function of Hfq in Bacillus subtilis, and show that it confers a survival advantage. A comparative transcriptome analysis revealed mRNAs with a differential abundance that are governed by the ResD-ResE system required for aerobic and anaerobic respiration. Expression of resD was found to be up-regulated in the hfq- strain. Furthermore, several genes of the GerE and ComK regulons were de-regulated in the hfq- background. Surprisingly, only six out of >100 known and predicted small RNAs (sRNAs) showed altered abundance in the absence of Hfq. Moreover, Hfq positively affected the transcript abundance of genes encoding type I toxin-antitoxin systems. Taken the moderate effect on sRNA levels and mRNAs together, it seems rather unlikely that Hfq plays a central role in RNA transactions in Bacillus subtilis.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/metabolismo , RNA Bacteriano/análise , Aerobiose , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Fator Proteico 1 do Hospedeiro/genética , RNA Mensageiro/análise , RNA Nuclear Pequeno/análise , Regulon , Estresse Fisiológico , Fatores de Transcrição/genética
19.
Infect Immun ; 81(11): 4081-90, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23980112

RESUMO

Bordetella pertussis is a Gram-negative pathogen causing the human respiratory disease called pertussis or whooping cough. Here we examined the role of the RNA chaperone Hfq in B. pertussis virulence. Hfq mediates interactions between small regulatory RNAs and their mRNA targets and thus plays an important role in posttranscriptional regulation of many cellular processes in bacteria, including production of virulence factors. We characterized an hfq deletion mutant (Δhfq) of B. pertussis 18323 and show that the Δhfq strain produces decreased amounts of the adenylate cyclase toxin that plays a central role in B. pertussis virulence. Production of pertussis toxin and filamentous hemagglutinin was affected to a lesser extent. In vitro, the ability of the Δhfq strain to survive within macrophages was significantly reduced compared to that of the wild-type (wt) strain. The virulence of the Δhfq strain in the mouse respiratory model of infection was attenuated, with its capacity to colonize mouse lungs being strongly reduced and its 50% lethal dose value being increased by one order of magnitude over that of the wt strain. In mixed-infection experiments, the Δhfq strain was then clearly outcompeted by the wt strain. This requirement for Hfq suggests involvement of small noncoding RNA regulation in B. pertussis virulence.


Assuntos
Bordetella pertussis/patogenicidade , Fator Proteico 1 do Hospedeiro/metabolismo , Fatores de Virulência/metabolismo , Animais , Carga Bacteriana , Bordetella pertussis/genética , Modelos Animais de Doenças , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Fator Proteico 1 do Hospedeiro/genética , Dose Letal Mediana , Pulmão/microbiologia , Camundongos , Toxina Pertussis/metabolismo , Análise de Sobrevida , Virulência , Fatores de Virulência/genética , Coqueluche/microbiologia , Coqueluche/patologia
20.
Infect Immun ; 81(8): 2761-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23690400

RESUMO

The type III secretion system (T3SS) of pathogenic bordetellae employs a self-associating tip complex protein Bsp22. This protein is immunogenic during infections by Bordetella bronchiseptica and could be used as a protective antigen to immunize mice against B. bronchiseptica challenge. Since low-passage clinical isolates of the human pathogen Bordetella pertussis produce a highly homologous Bsp22 protein (97% homology), we examined its vaccine and diagnostic potential. No Bsp22-specific antibodies were, however, detected in serum samples from 36 patients with clinically and serologically confirmed whooping cough disease (pertussis syndrome). Moreover, although the induction of Bsp22 secretion by the laboratory-adapted 18323 strain in the course of mice lung infection was observed, the B. pertussis 18323-infected mice did not mount any detectable serum antibody response against Bsp22. Furthermore, immunization with recombinant Bsp22 protein yielded induction of high Bsp22-specific serum antibody titers but did not protect mice against an intranasal challenge with B. pertussis 18323. Unlike for B. bronchiseptica, hence, the Bsp22 protein is nonimmunogenic, and/or the serum antibody response to it is suppressed, during B. pertussis infections of humans and mice.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Infecções por Bordetella/imunologia , Bordetella pertussis/imunologia , Coqueluche/imunologia , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA