Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 131(2): 022501, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505957

RESUMO

The ß decays from both the ground state and a long-lived isomer of ^{133}In were studied at the ISOLDE Decay Station (IDS). With a hybrid detection system sensitive to ß, γ, and neutron spectroscopy, the comparative partial half-lives (logft) have been measured for all their dominant ß-decay channels for the first time, including a low-energy Gamow-Teller transition and several first-forbidden (FF) transitions. Uniquely for such a heavy neutron-rich nucleus, their ß decays selectively populate only a few isolated neutron unbound states in ^{133}Sn. Precise energy and branching-ratio measurements of those resonances allow us to benchmark ß-decay theories at an unprecedented level in this region of the nuclear chart. The results show good agreement with the newly developed large-scale shell model (LSSM) calculations. The experimental findings establish an archetype for the ß decay of neutron-rich nuclei southeast of ^{132}Sn and will serve as a guide for future theoretical development aiming to describe accurately the key ß decays in the rapid-neutron capture (r-) process.

2.
Phys Rev Lett ; 122(4): 042502, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30768318

RESUMO

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The ß-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb ß decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the ß decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.

3.
Phys Rev Lett ; 121(14): 142701, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30339438

RESUMO

The ^{12}C(α,γ)^{16}O reaction plays a central role in astrophysics, but its cross section at energies relevant for astrophysical applications is only poorly constrained by laboratory data. The reduced α width, γ_{11}, of the bound 1^{-} level in ^{16}O is particularly important to determine the cross section. The magnitude of γ_{11} is determined via sub-Coulomb α-transfer reactions or the ß-delayed α decay of ^{16}N, but the latter approach is presently hampered by the lack of sufficiently precise data on the ß-decay branching ratios. Here we report improved branching ratios for the bound 1^{-} level [b_{ß,11}=(5.02±0.10)×10^{-2}] and for ß-delayed α emission [b_{ßα}=(1.59±0.06)×10^{-5}]. Our value for b_{ßα} is 33% larger than previously held, leading to a substantial increase in γ_{11}. Our revised value for γ_{11} is in good agreement with the value obtained in α-transfer studies and the weighted average of the two gives a robust and precise determination of γ_{11}, which provides significantly improved constraints on the ^{12}C(α,γ) cross section in the energy range relevant to hydrostatic He burning.

4.
Appl Radiat Isot ; 120: 71-75, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27918919

RESUMO

CeBr3 crystals meet many of the demands of high performance scintillators, due to their excellent timing properties, good effective Z and high photon yield. It is important to characterize their efficiency and to verify whether modern Monte Carlo codes are reliable enough to reproduced the observed values. We report here on the measurement of both total and photopeak efficiency of a 1" diameter×1" height CeBr3 crystal for gamma-ray energies up to 1.4MeV at several distances, using a variety of low energy gamma rays sources. The measured experimental efficiencies are compared with simulations developed in the framework of PENELOPE and GEANT4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA