Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38921875

RESUMO

Cathodes made of LiFePO4 (LFP) offer numerous benefits including being non-toxic, eco-friendly, and affordable. The distinctive olivine structure of LFP cathodes contributes to their electrochemical stability. Nonetheless, this structure is also the cause of their low ionic and electronic conductivity. To enhance these limitations, an uncomplicated approach has been effectively employed. A straightforward solid-state synthesis technique is used to apply a coating of biomass from potato peels to the LFP cathode, boosting its electrochemical capabilities. Potato peels contain pyridinic and pyrrolic nitrogen, which are conducive to ionic and electronic movement and facilitate pathways for lithium-ion and electron transfer, thus elevating electrochemical performance. When coated with nitrogen-doped carbon derived from potato peel biomass (PPNC@LFP), the LFP cathode demonstrates an improved discharge capacity of 150.39 mAh g-1 at a 0.1 C-rate and 112.83 mAh g-1 at a 1.0 C-rate, in contrast to the uncoated LFP which shows capacities of 141.34 mAh g-1 and 97.72 mAh g-1 at the same rates, respectively.

2.
Small ; : e2402245, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747006

RESUMO

This study explores trivalent Al interaction with aqueous starch gel in the presence of two different anions through salting effect. Salting-out nature of Al2(SO4)3·18H2O with starch gel causes precipitation of starch; this happens due to competitive anion-water complex formation over starch-water interaction, thereby reducing polymer solubility. Salting-in effect of AlCl3 with starch gel happens through Al3+ cation interaction with hydroxyl group of starch and increases polymer solubility, making gel electrolyte viable for battery applications. Prepared gel electrolyte exhibits ionic conductivity of 1.59 mS cm-1 and a high tAl 3+ value of 0.77. The gel electrolyte's performance is studied using two different cathodes, the Al|MoO3 cell employing starch gel electrolyte achieves discharge capacity of 193 mA h g-1 and Al|MnO2 cell achieves discharge capacity of 140 mA h g-1 @0.1 A g-1 for first cycle. The diffusion coefficient of both cells using starch gel electrolyte is calculated and found to be 2.1 × 10-11 cm2 s-1 for Al|MoO3 and 3.1 × 10-11 cm2 s-1 for Al|MnO2 cells. The Al|MoO3 cell at lower temperature shows improved electrochemical performance with a specific capacity retention of ≈87.8% over 90 cycles. This kind of aqueous gel electrolyte operating at low temperature broadens the application for next generation sustainable batteries.

3.
J Phys Chem Lett ; 15(17): 4753-4760, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38661574

RESUMO

This Letter explores the energy storage properties of nano zinc vanadate in zinc metal batteries and a Zn metal free capattery. The synthesis is a simple scalable solution state mechanochemical route with uniform nanosized one-dimensional zinc vanadate. The synthesized vanadate is engineered using NMP at the electrode fabrication stage to position the Zn2+ ions at an easily extractable site. This in turn tunes the bandgap from 2.38 to 2.16 eV, creating oxygen defective vacancies in the crystal lattice. In addition, electrochemical analysis of the engineered cathode is studied in a half-cell device that is further developed into a zinc metal free zinc ion capattery (ZiC). The developed metal free capattery delivered a capacity of 120 mAh g-1 at a current density of 100 mA g-1, and a pouch cell is fabricated to power light-emitting diodes.

4.
Sci Rep ; 11(1): 13266, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168234

RESUMO

Layered molybdenum diselenide (MoSe2) nanosheets were formed by the weak Van der Waals forces of attraction between Se and Mo atoms. MoSe2 has a larger space between the adjacent layers and smaller band gaps in the range of 0.85 to ~ 1.6 eV. In this study, MoSe2 nanosheets decorated nickel oxide (NiO) nanorods have been synthesized by hydrothermal method using sodium molybdate and selenium metal powder. NiO/MoSe2 composite formation was confirmed by powder X-ray diffraction analysis. In addition, the presence of MoSe2 nanosheets on NiO nanorods were confirmed by field emission scanning electron microscopy, high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. The Nyquist plots of NiO/MoSe2 coated glassy carbon electrode (GCE) was indicated that it had lower charge transfer resistance compared to NiO/GCE and MoSe2/GCE. Furthermore, as-prepared NiO/MoSe2/GCE was used to detect glucose in alkaline solution by cyclic voltammetry and amperometry techniques. The NiO/MoSe2/GCE was exhibited a linear response for the oxidation of glucose from 50 µM to 15.5 mM (R2 = 0.9842) at 0.5 V by amperometry. The sensor response time and the limit of detection were found to be 2 s and 0.6 µM for glucose. Moreover, selectivity of the NiO/MoSe2 sensor was tested in the presence of common interferent molecules such as hydrogen peroxide, fructose, lactose, ascorbic acid, uric acid, and dopamine. It was found that NiO/MoSe2/GCE did not respond to these interfering biomolecules. In addition, NiO/MoSe2/GCE had shown high stability, reproducibility and repeatability. Finally, the practical application of the sensor was demonstrated by detecting glucose in human blood serum with the acceptable recovery.


Assuntos
Glicemia/análise , Eletrodos , Molibdênio , Nanotubos , Níquel , Selênio , Humanos , Microscopia Eletrônica de Varredura , Nanoestruturas/ultraestrutura , Nanotubos/ultraestrutura , Espectroscopia Fotoeletrônica , Difração de Raios X
5.
RSC Adv ; 11(32): 19378-19386, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35479221

RESUMO

Recently, the development of cathode materials for Na-ion batteries has gained much attention due to the abundance, low cost, and easy availability of resources. Apart from the usual metal oxides, multi-electron redox materials grabbed attention due to their high energy density and practical capacity with long cycle life. Polyoxometalates (POMs) are inorganic clusters of higher valent metals, and act as electron sponges with multi-electron redox properties. Herein we report a Keggin-type polyoxometalate [PMo10V2O40]5- with Na+ and H+ counter cations as a cathode material for Na-ion batteries. Further the formation of POM is evidenced by PXRD, FT-IR, flame photometry and XPS studies. In Na-POM, Na+ ions in the intercluster cavities provide a better pathway and easy diffusion during the charge/discharge process, and contribute to better electrochemical properties than H-POM. The DFT studies further explore the detailed mechanistic pathway of Na+ ions around the clusters in the normal and super-reduced states. Na-POM enables better cycling stability and capacity retention with a specific discharge capacity of 123 mA h g-1 at 0.1C rate at room temperature.

6.
RSC Adv ; 10(2): 643-654, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35494450

RESUMO

Understanding blood glucose levels in our body can be a key part in identifying and diagnosing prediabetes. Herein, nickel oxide (NiO) decorated molybdenum disulfide (MoS2) nanosheets have been synthesized via a hydrothermal process to develop a non-enzymatic sensor for the detection of glucose. The surface morphology of the NiO/MoS2 nanocomposite was comprehensively investigated by field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HR-TEM), powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and Brunauer-Emmett-Teller (BET) analysis. The electro-catalytic activity of the as-prepared NiO/MoS2 nanocomposite towards glucose oxidation was investigated by cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and amperometry in 0.1 M NaOH. The NiO/MoS2 nanocomposite-based sensor showed outstanding electrocatalytic activity for the direct electro-oxidation of glucose due to it having more catalytic active sites, good conductivity, excellent electron transport and high specific surface area. Meanwhile, the NiO/MoS2 modified glassy carbon electrode (GCE) showed a linear range of glucose detection from 0.01 to 10 mM by amperometry at 0.55 V. The effect of other common interferent molecules on the electrode response was also tested using alanine, l-cysteine, fructose, hydrogen peroxide, lactose, uric acid, dopamine and ascorbic acid. These molecules did not interfere in the detection of glucose. Moreover, this NiO/MoS2/GCE sensor offered rapid response (2 s) and a wide linear range with a detection limit of 1.62 µM for glucose. The reproducibility, repeatability and stability of the sensor were also evaluated. The real application of the sensor was tested in a blood serum sample in the absence and presence of spiked glucose and its recovery values (96.1 to 99.8%) indicated that this method can be successfully applied to detect glucose in real samples.

7.
Sci Rep ; 9(1): 3318, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824812

RESUMO

A facile strategy to entrap milled silicon (m-Si) particles using nitrogen-doped-carbon (N-C@m-Si) to overcome the dramatic volume changes in Si during intercalation of lithium ions and to improve its electronic conductivity is reported here. The only natural nitrogen containing biomaterial alkaline polysaccharide, i.e., chitosan, is used as the carbon source. Simple hydrothermal technique followed by a subsequent carbonization process is used to synthesize N-C and N-C@m-Si particles. N-C@m-Si exhibited significantly improved electrochemical performance as compared to bare m-Si, which is confirmed by the obtained discharge capacity of 942.4 mAh g-1 and columbic efficiency of 97% after 50 cycles at 0.1C rate. With regard to the N-C electrodes, the obtained discharge capacity of 485.34 mAh g-1 and columbic efficiency of 99.78%, after 50 cycles at 0.1C rate is superior to the commercial graphite electrodes. The solid electrolyte interphase (SEI) layer that formed over m-Si and N-C@m-Si electrodes is characterized using X-ray photoelectron spectroscopy. Compared to the SEI layer that formed over m-Si electrode after 10 charge-discharge cycles, the N-C@m-Si electrode had a stable lithium fluoride and carbonate species. Brief reaction mechanisms, representing the formation of different species in the SEI layer, is derived to explain its behavior during the electrochemical processes.

8.
J Nanosci Nanotechnol ; 12(4): 3284-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22849107

RESUMO

High rate capable Mn-rich layered Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, 0.11) cathode materials that are fully charged are investigated with respect to stability. Differential scanning calorimetry is used to determine the thermal stability of cathode material compositions together with PVdF binder and a conductive agent by heating from 30 degrees C to 400 degrees C at 10 degrees C/min. In the Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, x = 0.11) cathode materials, the exothermic reaction started at 100 degrees C. Due to thermal runway, a sharp peak was observed at 279.25 degrees C for the material of x = 0.09 with exothermic heat generation of 168.4 J/g. For the Mn-rich cathode material, where x = 0.11, two relatively smaller peaks appeared at 250.72 degrees C and 268.60 degrees C with heat evolution of 71.49 J/g and 93.67 J/g, respectively. These layered cathode materials are thermally stable. The x = 0.09 composition shows huge heat flow occurrence when compared to the x = 0.11. It is concluded from a heat generation analysis that the two Mn-rich cathode materials are thermally stable for lithium rechargeable batteries.

9.
J Nanosci Nanotechnol ; 11(7): 5969-74, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22121641

RESUMO

The Si-Mn alloys as anode active materials were prepared by mechanical milling and calcination at three different temperatures like 600, 700, and 800 degrees C. The alloys were characterized by X-ray diffraction, field emission-scanning electron microscopy, field emission-transmission electron microscopy, and electrochemical cycling within a range of 2.5 V to 0.01 V versus Li/Li+. We found that the Si-Mn alloy calcined at 800 degrees C exhibited (i) an enhanced reversible capacity during the intercalation and de-intercalation process and (ii) a reduction in fading capacity characteristic due to modified structural and interfacial properties. Increasing the calcination temperature could improve the electrochemical performance of these materials, especially at 800 degrees C. Hence this alloy possibly suited to apply for lithium rechargeable batteries. The reversible capability after fourth cycling increases in the range of 95% to nearly 99% coulombic efficiency during the following intercalation and de-intercalation process. The Si-Mn alloy has the potential to be suitable for use as an anode active material in lithium rechargeable batteries.

10.
J Nanosci Nanotechnol ; 11(2): 1680-3, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21456266

RESUMO

Mn-rich layered Li[Ni0.3M0.2Mn0.5]O2 (M = Mg, In, and Gd) cathode active materials were synthesized by a simple sol-gel method and comparative studies of those materials depending on doping elements were carried out.

11.
J Nanosci Nanotechnol ; 11(1): 865-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446563

RESUMO

Novel cathode active materials, Li[Li(x)(Ni0.3Co0.1Mn0.6)1-x]O2 (x = 0.09, 0.11) composed of rod-like primary particles, but aggregated spherical shape in appearance, were synthesized. The newly Mn-rich cathode active materials were then adopted as cathodes to show the benefits for Li-ion rechargeable batteries. The results show that to use proper nano-scaled particles as a cathode and to make homogeneous particle sizes have great improvements on electrochemical performances, probably ascribed to enhancement of charge transfer kinetics and lower cell impedance at high voltage region (approximately 4.6 V). The electrochemical performances of Mn-rich cathodes were investigated by cycler (BT2000, Arbin), comparing electrochemical behaviors between room and elevated temperature, 55 degtees C. The morphology of cathodes having nano-scaled particles of active materials and the Mn-rich cathode active materials were investigated using field emission scanning electron microscope (FE-SEM) and field emission transmission electron microscope (FE-TEM), also the crystalline phase identification was analyzed by high power X-ray diffractometer (XRD).

12.
J Nanosci Nanotechnol ; 10(5): 3440-3, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20358974

RESUMO

The Ti-Co-Mg powders were synthesized by mechanical alloying process. The crystalline structure, particle size, surface morphology and the electrochemical performance of the Ti-Co-Mg alloy electrodes have been characterized by X-ray diffractometer, field emission-scanning electron microscopy, and charge-discharge cycler.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA