Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 1): 131326, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569988

RESUMO

Aspartate kinase (AK), an enzyme from the Wolbachia endosymbiont of Brugia malayi (WBm), plays a pivotal role in the bacterial cell wall and amino acid biosynthesis, rendering it an attractive candidate for therapeutic intervention. Allosteric inhibition of aspartate kinase is a prevalent mode of regulation across microorganisms and plants, often modulated by end products such as lysine, threonine, methionine, or meso-diaminopimelate. The intricate and diverse nature of microbial allosteric regulation underscores the need for rigorous investigation. This study employs a combined experimental and computational approach to decipher the allosteric regulation of WBmAK. Molecular Dynamics (MD) simulations elucidate that ATP (cofactor) and ASP (substrate) binding induce a closed conformation, promoting enzymatic activity. In contrast, the binding of lysine (allosteric inhibitor) leads to enzyme inactivation and an open conformation. The enzymatic assay demonstrates the optimal activity of WBmAK at 28 °C and a pH of 8.0. Notably, the allosteric inhibition study highlights lysine as a more potent inhibitor compared to threonine. Importantly, this investigation sheds light on the allosteric mechanism governing WBmAK and imparts novel insights into structure-based drug discovery, paving the way for the development of effective inhibitors against filarial pathogens.


Assuntos
Aspartato Quinase , Brugia Malayi , Simulação de Dinâmica Molecular , Wolbachia , Brugia Malayi/enzimologia , Brugia Malayi/microbiologia , Regulação Alostérica , Animais , Aspartato Quinase/metabolismo , Aspartato Quinase/genética , Aspartato Quinase/química , Simbiose , Trifosfato de Adenosina/metabolismo , Lisina/química , Lisina/metabolismo
2.
J Biomol Struct Dyn ; 40(7): 3223-3241, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33222623

RESUMO

Aspartate Semialdehyde Dehydrogenase (ASDH) is an important enzyme essential for the viability of pathogenic microorganisms. ASDH is mainly involved in amino acid and cell wall biosynthesis of microorganisms, hence it is considered to be a promising target for drug design. This enzyme depicts similar mechanistic function in all microorganisms; although, the kinetic efficiency of an enzyme differs according to their active site residual composition. Therefore, understanding the residual variation and kinetic efficiency of the enzyme would pave new insights in structure-based drug discovery and a novel drug molecule against ASDH. Here, ASDH from Wolbachia endosymbiont of Brugia malayi is used as a prime enzyme to execute evolutionary studies. The phylogenetic analysis was opted to classify 400 sequences of ASDH enzymes based on their structure and electrostatic surfaces. Analysis resulted in 37 monophyletic clades of diverse pathogenic and non-pathogenic organisms. The representative structures of 37 ASDHs from different clades were further deciphered to structural homologues. These enzymes exhibited presence of more positively charged surfaces than negatively charged surfaces in the active site pocket which restrains evolutionary significance. Docking studies of NADP+ with 37 enzymes reveals that site-specific residual variation in the active site pocket modulates the binding affinity (ranges of -13 to -9 kcal/mol). Type-I and Type-II divergence studies show, no significant functional divergence among ASDH, but residual changes were found among the enzyme that modulates the biochemical characteristics and catalytic efficiency. The present study not only explores residual alteration and catalytic variability, it also aids in the design of species-specific inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Aspartato-Semialdeído Desidrogenase , Evolução Molecular , Sequência de Aminoácidos , Aspartato-Semialdeído Desidrogenase/química , Aspartato-Semialdeído Desidrogenase/genética , Sítios de Ligação , Filogenia
3.
J Cell Biochem ; 122(12): 1832-1847, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34448250

RESUMO

The majority of bacteria and archaea contains Toxin-Antitoxin system (TA) that codes for the stable Toxin and unstable Antitoxin components forming a complex. The Antitoxin inhibits the catalytic activities of the Toxin. In general, the Antitoxin will be degraded by the proteases leading to the Toxin activation that subsequently targets essential cellular processes, including transcription, translation, replication, cell division, and cell wall biosynthesis. The Zeta Toxin-Epsilon Antitoxin system in ESKAPE pathogen stabilizes the resistance plasmid and promotes pathogenicity. The known TA system in Acinetobacter baumannii are known to be involved in the replication and translation, however, the mechanism of Zeta Toxin-Epsilon Antitoxin in cell wall biosynthesis remains unknown. In the present study, molecular docking and molecular dynamic (MD) simulations were employed to demonstrate whether Zeta Toxin can impair cell wall synthesis in A. baumannii. Further, the degradation mechanism of Antitoxin in the presence and absence of adenosine triphosphate (ATP) molecules are explained through MD simulation. The result reveals that the cleavage of Antitoxin could be possible with the presence of ATP by displaying its response from 20 ns, whereas the Zeta Toxin/Epsilon was unstable after 90 ns. The obtained results demonstrate that Zeta Toxin is "temporarily favorable" for ATP to undergo phosphorylation at UNAG kinase through the substrate tunneling process. The study further evidenced that phosphorylated UNAG prevents the binding of MurA, the enzyme that catalyzes the initial step of bacterial peptidoglycan biosynthesis. Therefore, the present study explores the binding mechanism of Zeta Toxin/Epsilon Antitoxin, which could be beneficial for preventing cell wall biosynthesis as well as for unveiling the alternative treatment options to antibiotics.


Assuntos
Acinetobacter baumannii/química , Parede Celular/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sistemas Toxina-Antitoxina , Acinetobacter baumannii/metabolismo , Parede Celular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA