Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Nucleic Acids Res ; 52(7): 3636-3653, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38321951

RESUMO

MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.


Assuntos
Epigênese Genética , Histonas , Proteína 2 de Ligação a Metil-CpG , Nucleossomos , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteína 2 de Ligação a Metil-CpG/genética , Nucleossomos/metabolismo , Histonas/metabolismo , Humanos , Ligação Proteica , Síndrome de Rett/genética , Síndrome de Rett/metabolismo , Mutação , Animais
2.
Cancers (Basel) ; 15(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37046613

RESUMO

(1) Background: About 50% of prescribed colonoscopies report no pathological findings. A secondary screening test after fecal immunochemical test positivity (FIT+) would be required. Considering thermal liquid biopsy (TLB) as a potential secondary test, the aim of this work was to study possible interferences of colonoscopy bowel preparation on TLB outcome on a retrospective study; (2) Methods: Three groups were studied: 1/514 FIT(+) patients enrolled in a colorectal screening program (CN and CP with normal and pathological colonoscopy, respectively), with blood samples obtained just before colonoscopy and after bowel preparation; 2/55 patients from the CN group with blood sample redrawn after only standard 8-10 h fasting and no bowel preparation (CNR); and 3/55 blood donors from the biobank considered as a healthy control group; (3) Results: The results showed that from the 514 patients undergoing colonoscopy, 247 had CN and 267 had CP. TLB parameters in these two groups were similar but different from those of the blood donors. The resampled patients (with normal colonoscopy and no bowel preparation) had similar TLB parameters to those of the blood donors. TLB parameters together with fluorescence spectra and other serum indicators (albumin and C-reactive protein) confirmed the statistically significant differences between normal colonoscopy patients with and without bowel preparation; (4) Conclusions: Bowel preparation seemed to alter serum protein levels and altered TLB parameters (different from a healthy subject). The diagnostic capability of other liquid-biopsy-based methods might also be compromised. Blood extraction after bowel preparation for colonoscopy should be avoided.

3.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111342

RESUMO

Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.

4.
Int J Biol Macromol ; 232: 123373, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36702223

RESUMO

Hydroxymethylated cytosine (5hmC) is a stable DNA epigenetic mark recognized by methyl-CpG binding protein 2 (MeCP2), which acts as a transcriptional regulator and a global chromatin-remodeling element. Because 5hmC triggers a gene regulation response markedly different from that produced by methylated cytosine (5mC), both modifications must affect DNA structure and/or DNA interaction with MeCP2 differently. MeCP2 is a six-domain intrinsically disordered protein (IDP) with two domains responsible for dsDNA binding: methyl-CpG binding domain (MBD) and intervening domain (ID). Here we report the detailed thermodynamic characterization of the interaction of hmCpG-DNA with MeCP2. We find that hmCpG-DNA interacts with MeCP2 in a distinctly different mode with a particular thermodynamic signature, compared to methylated or unmethylated DNA. In addition, we find evidence for Rett syndrome-associated mutations altering the interaction of MeCP2 with dsDNA in a cytosine modification-specific manner which may correlate with disease onset time and clinical severity score.


Assuntos
Cromatina , DNA , Citosina , Epigenômica , Termodinâmica
5.
Protein Sci ; 31(10): e4427, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36173175

RESUMO

Bacteroides fragilis is an abundant commensal component of the healthy human colon. However, under dysbiotic conditions, enterotoxigenic B. fragilis (ETBF) may arise and elicit diarrhea, anaerobic bacteremia, inflammatory bowel disease, and colorectal cancer. Most worrisome, ETBF is resistant to many disparate antibiotics. ETBF's only recognized specific virulence factor is a zinc-dependent metallopeptidase (MP) called B. fragilis toxin (BFT) or fragilysin, which damages the intestinal mucosa and triggers disease-related signaling mechanisms. Thus, therapeutic targeting of BFT is expected to limit ETBF pathogenicity and improve the prognosis for patients. We focused on one of the naturally occurring BFT isoforms, BFT-3, and managed to repurpose several approved drugs as BFT-3 inhibitors through a combination of biophysical, biochemical, structural, and cellular techniques. In contrast to canonical MP inhibitors, which target the active site of mature enzymes, these effectors bind to a distal allosteric site in the proBFT-3 zymogen structure, which stabilizes a partially unstructured, zinc-free enzyme conformation by shifting a zinc-dependent disorder-to-order equilibrium. This yields proBTF-3 incompetent for autoactivation, thus ablating hydrolytic activity of the mature toxin. Additionally, a similar destabilizing effect is observed for the activated protease according to biophysical and biochemical data. Our strategy paves a novel way for the development of highly specific inhibitors of ETBF-mediated enteropathogenic conditions.


Assuntos
Infecções Bacterianas , Toxinas Bacterianas , Antibacterianos/metabolismo , Toxinas Bacterianas/metabolismo , Bacteroides fragilis/metabolismo , Precursores Enzimáticos/metabolismo , Humanos , Metaloendopeptidases/metabolismo , Fatores de Virulência/metabolismo
6.
J Chem Inf Model ; 61(12): 6094-6106, 2021 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-34806382

RESUMO

SARS-CoV-2 is a type of coronavirus responsible for the international outbreak of respiratory illness termed COVID-19 that forced the World Health Organization to declare a pandemic infectious disease situation of international concern at the beginning of 2020. The need for a swift response against COVID-19 prompted to consider different sources to identify bioactive compounds that can be used as therapeutic agents, including available drugs and natural products. Accordingly, this work reports the results of a virtual screening process aimed at identifying antiviral natural product inhibitors of the SARS-CoV-2 Mpro viral protease. For this purpose, ca. 2000 compounds of the Selleck database of Natural Compounds were the subject of an ensemble docking process targeting the Mpro protease. Molecules that showed binding to most of the protein conformations were retained for a further step that involved the computation of the binding free energy of the ligand-Mpro complex along a molecular dynamics trajectory. The compounds that showed a smooth binding free energy behavior were selected for in vitro testing. From the resulting set of compounds, five compounds exhibited an antiviral profile, and they are disclosed in the present work.


Assuntos
Produtos Biológicos , COVID-19 , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases , Inibidores de Proteases/farmacologia , SARS-CoV-2
7.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641606

RESUMO

The COVID-19 pandemic outbreak prompts an urgent need for efficient therapeutics, and repurposing of known drugs has been extensively used in an attempt to get to anti-SARS-CoV-2 agents in the shortest possible time. The glycoside rutin shows manifold pharmacological activities and, despite its use being limited by its poor solubility in water, it is the active principle of many pharmaceutical preparations. We herein report our in silico and experimental investigations of rutin as a SARS-CoV-2 Mpro inhibitor and of its water solubility improvement obtained by mixing it with l-arginine. Tests of the rutin/l-arginine mixture in a cellular model of SARS-CoV-2 infection highlighted that the mixture still suffers from unfavorable pharmacokinetic properties, but nonetheless, the results of this study suggest that rutin might be a good starting point for hit optimization.


Assuntos
Antivirais/farmacologia , Arginina/farmacologia , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Rutina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Células A549 , Proteases 3C de Coronavírus/metabolismo , Humanos , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/metabolismo , Solubilidade
8.
Pharmaceuticals (Basel) ; 14(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34577592

RESUMO

Inhibiting the main protease 3CLpro is the most common strategy in the search for antiviral drugs to fight the infection from SARS-CoV-2. We report that the natural compound eugenol is able to hamper in vitro the enzymatic activity of 3CLpro, the SARS-CoV-2 main protease, with an inhibition constant in the sub-micromolar range (Ki = 0.81 µM). Two phenylpropene analogs were also tested: the same effect was observed for estragole with a lower potency (Ki = 4.1 µM), whereas anethole was less active. The binding efficiency index of these compounds is remarkably favorable due also to their small molecular mass (MW < 165 Da). We envision that nanomolar inhibition of 3CLpro is widely accessible within the chemical space of simple natural compounds.

9.
Biomolecules ; 11(8)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34439881

RESUMO

Intrinsic disorder plays an important functional role in proteins. Disordered regions are linked to posttranslational modifications, conformational switching, extra/intracellular trafficking, and allosteric control, among other phenomena. Disorder provides proteins with enhanced plasticity, resulting in a dynamic protein conformational/functional landscape, with well-structured and disordered regions displaying reciprocal, interdependent features. Although lacking well-defined conformation, disordered regions may affect the intrinsic stability and functional properties of ordered regions. MeCP2, methyl-CpG binding protein 2, is a multifunctional transcriptional regulator associated with neuronal development and maturation. MeCP2 multidomain structure makes it a prototype for multidomain, multifunctional, intrinsically disordered proteins (IDP). The methyl-binding domain (MBD) is one of the key domains in MeCP2, responsible for DNA recognition. It has been reported previously that the two disordered domains flanking MBD, the N-terminal domain (NTD) and the intervening domain (ID), increase the intrinsic stability of MBD against thermal denaturation. In order to prove unequivocally this stabilization effect, ruling out any artifactual result from monitoring the unfolding MBD with a local fluorescence probe (the single tryptophan in MBD) or from driving the protein unfolding by temperature, we have studied the MBD stability by differential scanning calorimetry (reporting on the global unfolding process) and chemical denaturation (altering intramolecular interactions by a different mechanism compared to thermal denaturation).


Assuntos
DNA/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Sítios de Ligação , Regulação da Expressão Gênica , Humanos , Ligação Proteica , Domínios Proteicos , Desdobramento de Proteína
10.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204408

RESUMO

(1) Background: Biophysical techniques applied to serum samples characterization could promote the development of new diagnostic tools. Fluorescence spectroscopy has been previously applied to biological samples from cancer patients and differences from healthy individuals were observed. Dendronized hyperbranched polymers (DHP) based on bis(hydroxymethyl)propionic acid (bis-MPA) were developed in our group and their potential biomedical applications explored. (2) Methods: A total of 94 serum samples from diagnosed cancer patients and healthy individuals were studied (20 pancreatic ductal adenocarcinoma, 25 blood donor, 24 ovarian cancer, and 25 benign ovarian cyst samples). (3) Results: Fluorescence spectra of serum samples (fluorescence liquid biopsy, FLB) in the presence and the absence of DHP-bMPA were recorded and two parameters from the signal curves obtained. A secondary parameter, the fluorescence spectrum score (FSscore), was calculated, and the diagnostic model assessed. For pancreatic ductal adenocarcinoma (PDAC) and ovarian cancer, the classification performance was improved when including DHP-bMPA, achieving high values of statistical sensitivity and specificity (over 85% for both pathologies). (4) Conclusions: We have applied FLB as a quick, simple, and minimally invasive promising technique in cancer diagnosis. The classification performance of the diagnostic method was further improved by using DHP-bMPA, which interacted differentially with serum samples from healthy and diseased subjects. These preliminary results set the basis for a larger study and move FLB closer to its clinical application, providing useful information for the oncologist during patient diagnosis.


Assuntos
Biomarcadores Tumorais , Cátions , Biópsia Líquida/métodos , Neoplasias/diagnóstico , Polímeros , Cátions/química , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/normas , Humanos , Biópsia Líquida/normas , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Polímeros/química , Curva ROC , Espectrometria de Fluorescência
11.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208928

RESUMO

The development of new antiviral drugs against SARS-CoV-2 is a valuable long-term strategy to protect the global population from the COVID-19 pandemic complementary to the vaccination. Considering this, the viral main protease (Mpro) is among the most promising molecular targets in light of its importance during the viral replication cycle. The natural flavonoid quercetin 1 has been recently reported to be a potent Mpro inhibitor in vitro, and we explored the effect produced by the introduction of organoselenium functionalities in this scaffold. In particular, we report here a new synthetic method to prepare previously inaccessible C-8 seleno-quercetin derivatives. By screening a small library of flavonols and flavone derivatives, we observed that some compounds inhibit the protease activity in vitro. For the first time, we demonstrate that quercetin (1) and 8-(p-tolylselenyl)quercetin (2d) block SARS-CoV-2 replication in infected cells at non-toxic concentrations, with an IC50 of 192 µM and 8 µM, respectively. Based on docking experiments driven by experimental evidence, we propose a non-covalent mechanism for Mpro inhibition in which a hydrogen bond between the selenium atom and Gln189 residue in the catalytic pocket could explain the higher Mpro activity of 2d and, as a result, its better antiviral profile.


Assuntos
Antivirais/química , Quercetina/química , SARS-CoV-2/metabolismo , Selênio/química , Proteínas da Matriz Viral/antagonistas & inibidores , Animais , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Domínio Catalítico , Chlorocebus aethiops , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Quercetina/metabolismo , Quercetina/farmacologia , SARS-CoV-2/isolamento & purificação , Selênio/metabolismo , Células Vero , Proteínas da Matriz Viral/metabolismo , Replicação Viral/efeitos dos fármacos
12.
J Pers Med ; 11(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924346

RESUMO

BACKGROUND: Multiple sclerosis (MS) is frequently characterized by a variety of clinical signs, often exhibiting little specificity. The diagnosis requires a combination of medical observations and instrumental tests, and any support for its objective assessment is helpful. OBJECTIVE: Herein, we describe the application of thermal liquid biopsy (TLB) of blood plasma samples, a methodology for predicting the occurrence of MS with a noninvasive, quick blood test. METHODS: TLB allows one to define an index (TLB score), which provides information about overall real-time alterations in plasma proteome that may be indicative of MS. RESULTS: This pilot study, based on 85 subjects (45 MS patients and 40 controls), showed good performance indexes (sensitivity and specificity both around 70%). The diagnostic methods better discriminate between early stage and low-burden MS patients, and it is not influenced by gender, age, or assumption of therapeutic drugs. TLB is more accurate for patients having low disability level (≤ 3.0, measured by the expanded disability status scale, EDSS) and a relapsing-remitting diagnosis. CONCLUSION: Our results suggest that TLB can be applied to MS, especially in an initial phase of the disease when diagnosis is difficult and yet more important (in such cases, accuracy of prediction is close to 80%), as well as in personalized patient periodic monitoring. The next step will be determining its utility in differentiating between MS and other disorders, in particular in inflammatory diseases.

13.
Biomedicines ; 9(4)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918402

RESUMO

The pandemic, due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has stimulated the search for antivirals to tackle COVID-19 infection. Molecules with known pharmacokinetics and already approved for human use have been demonstrated or predicted to be suitable to be used either directly or as a base for a scaffold-based drug design. Among these substances, quercetin is known to be a potent in vitro inhibitor of 3CLpro, the SARS-CoV-2 main protease. However, its low in vivo bioavailability calls for modifications to its molecular structure. In this work, this issue is addressed by using rutin, a natural flavonoid that is the most common glycosylated conjugate of quercetin, as a model. Combining experimental (spectroscopy and calorimetry) and simulation techniques (docking and molecular dynamics simulations), we demonstrate that the sugar adduct does not hamper rutin binding to 3CLpro, and the conjugated compound preserves a high potency (inhibition constant in the low micromolar range, Ki = 11 µM). Although showing a disruption of the pseudo-symmetry in the chemical structure, a larger steric volume and molecular weight, and a higher solubility compared to quercetin, rutin is able to associate in the active site of 3CLpro, interacting with the catalytic dyad (His41/Cys145). The overall results have implications in the drug-design of quercetin analogs, and possibly other antivirals, to target the catalytic site of the SARS-CoV-2 3CLpro.

14.
Int J Biol Macromol ; 175: 58-66, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33548325

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a transcriptional regulator and a chromatin-associated structural protein. MeCP2 deregulation results in two neurodevelopmental disorders: MeCP2 dysfunction is associated with Rett syndrome, while excess of activity is associated with MeCP2 duplication syndrome. MeCP2 is an intrinsically disordered protein (IDP) constituted by six structural domains with variable, small percentage of well-defined secondary structure. Two domains, methyl-CpG binding domain (MBD) and transcription repressor domain (TRD), are the elements responsible for dsDNA binding ability and recruitment of the gene transcription/silencing machinery, respectively. Previously we studied the influence of the completely disordered, MBD-flanking domains (N-terminal domain, NTD, and intervening domain, ID) on the structural and functional features of the MBD (Claveria-Gimeno, R. et al. Sci Rep. 2017, 7, 41,635). Here we report the biophysical study of the influence of the remaining domains (transcriptional repressor domain, TRD, and C-terminal domains, CTDα and CTDß) on the structural stability of MBD and the dsDNA binding capabilities of MBD and ID. The influence of distant disordered domains on MBD properties makes it necessary to consider the NTD-MBD-ID variant as the minimal protein construct for studying dsDNA/chromatin binding properties, while the full-length protein should be considered for transcriptional regulation studies.


Assuntos
Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Cromatina/química , DNA/química , Metilação de DNA/fisiologia , Proteínas de Ligação a DNA/química , Humanos , Mutação , Ligação Proteica/fisiologia , Domínios Proteicos/fisiologia , Estabilidade Proteica , Estrutura Secundária de Proteína/fisiologia , Fatores de Transcrição/metabolismo
15.
Arch Biochem Biophys ; 700: 108767, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33476564

RESUMO

Neurofibromin-1 (NF1) is a large, multidomain tumour suppressor encoded by the NF1 gene. The gene is mutated in neurofibromatosis type I, a disease characterized by malignant tumours of the nervous system and benign neurofibromas. The best-known activity of NF1 is the down-regulation of the mitogen-activated protein kinase pathway via its three-hundred-residue-long GTPase-activating protein (GAP) domain (the so-called GAP-related domain (NF1-GRD)). The NF1-GRD stimulates Ras GTPase activity in turning off signalling. Despite this activity, NF1-GRD has been demonstrated to bind to other different proteins, such as SPRED1 or MC1R. We have embarked on the biophysical and conformational characterization of NF1-GRD in solution by using several spectroscopic (namely fluorescence and circular dichroism (CD)) and biophysical techniques (namely size exclusion chromatography (SEC) and differential scanning calorimetry (DSC)). This biophysical characterization is crucial in deciphering NF1-GRD interactome and in finding biochemical features, modulating possible protein interactions. The native-like structure of NF1-GRD (as monitored by intrinsic fluorescence and far-UV CD) was strongly pH-dependent showing a pH-titration causing a substantial increase in its helicity. NF1-GRD had a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by intrinsic and ANS fluorescence, and CD. Chemical denaturations showed that NF1-GRD unfolded through an intermediate which has a substantial amount of solvent-exposed hydrophobic patches.


Assuntos
Neurofibromina 1/química , Varredura Diferencial de Calorimetria , Dicroísmo Circular , Humanos , Domínios Proteicos , Estabilidade Proteica
16.
Biomolecules ; 10(11)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33182787

RESUMO

Methyl-CpG binding protein 2 (MeCP2) is a transcriptional regulator and a chromatin-binding protein involved in neuronal development and maturation. Loss-of-function mutations in MeCP2 result in Rett syndrome (RTT), a neurodevelopmental disorder that is the main cause of mental retardation in females. MeCP2 is an intrinsically disordered protein (IDP) constituted by six domains. Two domains are the main responsible elements for DNA binding (methyl-CpG binding domain, MBD) and recruitment of gene transcription/silencing machinery (transcription repressor domain, TRD). These two domains concentrate most of the RTT-associated mutations. R106W and R133C are associated with severe and mild RTT phenotype, respectively. We have performed a comprehensive characterization of the structural and functional impact of these substitutions at molecular level. Because we have previously shown that the MBD-flanking disordered domains (N-terminal domain, NTD, and intervening domain, ID) exert a considerable influence on the structural and functional features of the MBD (Claveria-Gimeno, R. et al. Sci Rep. 2017, 7, 41635), here we report the biophysical study of the influence of the protein scaffold on the structural and functional effect induced by these two RTT-associated mutations. These results represent an example of how a given mutation may show different effects (sometimes opposing effects) depending on the molecular context.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Mutação , Síndrome de Rett/genética , Feminino , Humanos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/química , Proteína 2 de Ligação a Metil-CpG/metabolismo , Fenótipo , Domínios Proteicos , Estabilidade Proteica , Síndrome de Rett/metabolismo
17.
Int J Biol Macromol ; 164: 1693-1703, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32745548

RESUMO

The global health emergency generated by coronavirus disease 2019 (COVID-19) has prompted the search for preventive and therapeutic treatments for its pathogen, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are many potential targets for drug discovery and development to tackle this disease. One of these targets is the main protease, Mpro or 3CLpro, which is highly conserved among coronaviruses. 3CLpro is an essential player in the viral replication cycle, processing the large viral polyproteins and rendering the individual proteins functional. We report a biophysical characterization of the structural stability and the catalytic activity of 3CLpro from SARS-CoV-2, from which a suitable experimental in vitro molecular screening procedure has been designed. By screening of a small chemical library consisting of about 150 compounds, the natural product quercetin was identified as reasonably potent inhibitor of SARS-CoV-2 3CLpro (Ki ~ 7 µM). Quercetin could be shown to interact with 3CLpro using biophysical techniques and bind to the active site in molecular simulations. Quercetin, with well-known pharmacokinetic and ADMET properties, can be considered as a good candidate for further optimization and development, or repositioned for COVID-19 therapeutic treatment.


Assuntos
Antivirais/farmacologia , Betacoronavirus/enzimologia , Cisteína Endopeptidases/química , Inibidores de Proteases/farmacologia , Quercetina/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química , Antivirais/química , Betacoronavirus/química , Betacoronavirus/efeitos dos fármacos , COVID-19 , Domínio Catalítico/efeitos dos fármacos , Proteases 3C de Coronavírus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Cisteína Endopeptidases/metabolismo , Descoberta de Drogas , Humanos , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Inibidores de Proteases/química , Conformação Proteica/efeitos dos fármacos , Desdobramento de Proteína , Quercetina/química , SARS-CoV-2 , Proteínas não Estruturais Virais/metabolismo , Tratamento Farmacológico da COVID-19
18.
J Pers Med ; 11(1)2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33396529

RESUMO

BACKGROUND: Current efforts in the identification of new biomarkers are directed towards an accurate differentiation between benign and premalignant cysts. Thermal Liquid Biopsy (TLB) has been previously applied to inflammatory and tumor diseases and could offer an interesting point of view in this type of pathology. METHODS: In this work, twenty patients (12 males and 8 females, average ages 62) diagnosed with a pancreatic cyst benign (10) and premalignant (10) cyst lesions were recruited, and biological samples were obtained during the endoscopic ultrasonography procedure. RESULTS: Proteomic content of cyst liquid samples was studied and several common proteins in the different groups were identified. TLB cyst liquid profiles reflected protein content. Also, TLB serum score was able to discriminate between healthy and cysts patients (71% sensitivity and 98% specificity) and between benign and premalignant cysts (75% sensitivity and 67% specificity). CONCLUSIONS: TLB analysis of plasmatic serum sample, a quick, simple and non-invasive technique that can be easily implemented, reports valuable information on the observed pancreatic lesion. These preliminary results set the basis for a larger study to refine TLB serum score and move closer to the clinical application of TLB providing useful information to the gastroenterologist during patient diagnosis.

19.
Cancers (Basel) ; 11(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31331013

RESUMO

Risk population screening programs are instrumental for advancing cancer management and reducing economic costs of therapeutic interventions and the burden of the disease, as well as increasing the survival rate and improving the quality of life for cancer patients. Lung cancer, with high incidence and mortality rates, is not excluded from this situation. The success of screening programs relies on many factors, with some of them being the appropriate definition of the risk population and the implementation of detection techniques with an optimal discrimination power and strong patient adherence. Liquid biopsy based on serum or plasma detection of circulating tumor cells or DNA/RNA is increasingly employed nowadays, but certain limitations constrain its wide application. In this work, we present a new implementation of thermal liquid biopsy (TLB) for lung cancer patients. TLB provides a prediction score based on the ability to detect plasma/serum proteome alterations through calorimetric thermograms that strongly correlates with the presence of lung cancer disease (91% accuracy rate, 90% sensitivity, 92% specificity, diagnostic odds ratio 104). TLB is a quick, minimally-invasive, low-risk technique that can be applied in clinical practice for evidencing lung cancer, and it can be used in screening and monitoring actions.

20.
Methods Mol Biol ; 1964: 185-213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30929244

RESUMO

Isothermal titration calorimetry (ITC) has become the preferred experimental technique for characterizing intermolecular interactions between biological molecules. Among the several advantages, the use of natural non-labeled molecules and the determination of the complete thermodynamic profile for the interaction in solution remain as the primary features that have promoted ITC to the forefront of experimental biophysics. The experimental design in ITC may range from studying a simple direct binary macromolecule-ligand interaction to studying the homotropic or heterotropic cooperative effect between ligands when interacting with a given macromolecule. The theory of the binding polynomial has proven to be an appropriate unifying framework for handling the complexities that can be encountered when studying macromolecule-ligand interactions, though it has been deemed troublesome. The goal of this chapter is to provide a quite simple and widely available set of training experiments aimed at mastering the formalism of the binding polynomial applied to isothermal titration calorimetry.


Assuntos
Calorimetria/métodos , Termodinâmica , Algoritmos , Fenômenos Biofísicos , Cinética , Ligantes , Modelos Estatísticos , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA