Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Immunity ; 57(5): 1105-1123.e8, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38703775

RESUMO

Immunosuppressive macrophages restrict anti-cancer immunity in glioblastoma (GBM). Here, we studied the contribution of microglia (MGs) and monocyte-derived macrophages (MDMs) to immunosuppression and mechanisms underlying their regulatory function. MDMs outnumbered MGs at late tumor stages and suppressed T cell activity. Molecular and functional analysis identified a population of glycolytic MDM expressing GLUT1 with potent immunosuppressive activity. GBM-derived factors promoted high glycolysis, lactate, and interleukin-10 (IL-10) production in MDMs. Inhibition of glycolysis or lactate production in MDMs impaired IL-10 expression and T cell suppression. Mechanistically, intracellular lactate-driven histone lactylation promoted IL-10 expression, which was required to suppress T cell activity. GLUT1 expression on MDMs was induced downstream of tumor-derived factors that activated the PERK-ATF4 axis. PERK deletion in MDM abrogated histone lactylation, led to the accumulation of intratumoral T cells and tumor growth delay, and, in combination with immunotherapy, blocked GBM progression. Thus, PERK-driven glucose metabolism promotes MDM immunosuppressive activity via histone lactylation.


Assuntos
Glioblastoma , Glucose , Histonas , Macrófagos , Glioblastoma/imunologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Animais , Histonas/metabolismo , Camundongos , Macrófagos/imunologia , Macrófagos/metabolismo , Glucose/metabolismo , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Interleucina-10/metabolismo , Glicólise , Microglia/metabolismo , Microglia/imunologia , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tolerância Imunológica
3.
Cancer Res ; 82(22): 4274-4287, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36126163

RESUMO

In multiple types of cancer, an increased frequency in myeloid-derived suppressor cells (MDSC) is associated with worse outcomes and poor therapeutic response. In the glioblastoma (GBM) microenvironment, monocytic (m) MDSCs represent the predominant subset. However, the molecular basis of mMDSC enrichment in the tumor microenvironment compared with granulocytic (g) MDSCs has yet to be determined. Here we performed the first broad epigenetic profiling of MDSC subsets to define underlying cell-intrinsic differences in behavior and found that enhanced gene accessibility of cell adhesion programs in mMDSCs is linked to their tumor-accelerating ability in GBM models upon adoptive transfer. Mouse and human mMDSCs expressed higher levels of integrin ß1 and dipeptidyl peptidase-4 (DPP-4) compared with gMDSCs as part of an enhanced cell adhesion signature. Integrin ß1 blockade abrogated the tumor-promoting phenotype of mMDSCs and altered the immune profile in the tumor microenvironment, whereas treatment with a DPP-4 inhibitor extended survival in preclinical GBM models. Targeting DPP-4 in mMDSCs reduced pERK signaling and their migration towards tumor cells. These findings uncover a fundamental difference in the molecular basis of MDSC subsets and suggest that integrin ß1 and DPP-4 represent putative immunotherapy targets to attenuate myeloid cell-driven immune suppression in GBM. SIGNIFICANCE: Epigenetic profiling uncovers cell adhesion programming as a regulator of the tumor-promoting functions of monocytic myeloid-derived suppressor cells in glioblastoma, identifying therapeutic targets that modulate the immune response and suppress tumor growth.


Assuntos
Adesão Celular , Glioblastoma , Células Supressoras Mieloides , Animais , Humanos , Camundongos , Glioblastoma/metabolismo , Glioblastoma/patologia , Integrina beta1/metabolismo , Células Supressoras Mieloides/patologia , Microambiente Tumoral
4.
J Cancer ; 13(6): 1933-1944, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399717

RESUMO

In this study, we evaluated the ability of negatively charged bio-degradable nanoparticles, ONP- 302, to inhibit tumor growth. Therapeutic treatment with ONP-302 in vivo resulted in a marked delay in tumor growth in three different syngeneic tumor models in immunocompetent mice. ONP- 302 efficacy persisted with depletion of CD8+ T cells in immunocompetent mice and also was effective in immune deficient mice. Examination of ONP-302 effects on components of the tumor microenvironment (TME) were explored. ONP-302 treatment caused a gene expression shift in TAMs toward the pro-inflammatory M1 type and substantially inhibited the expression of genes associated with the pro-tumorigenic function of CAFs. ONP-302 also induced apoptosis in CAFs in the TME. Together, these data support further development of ONP-302 as a novel first-in- class anti-cancer therapeutic that can be used as a single-agent as well as in combination therapies for the treatment of solid tumors due to its ability to modulate the TME.

5.
Nat Commun ; 12(1): 1717, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741967

RESUMO

Myeloid-derived suppressor cells (MDSC) are pathologically activated neutrophils and monocytes with potent immune suppressive activity. These cells play an important role in accelerating tumor progression and undermining the efficacy of anti-cancer therapies. The natural mechanisms limiting MDSC activity are not well understood. Here, we present evidence that type I interferons (IFN1) receptor signaling serves as a universal mechanism that restricts acquisition of suppressive activity by these cells. Downregulation of the IFNAR1 chain of this receptor is found in MDSC from cancer patients and mouse tumor models. The decrease in IFNAR1 depends on the activation of the p38 protein kinase and is required for activation of the immune suppressive phenotype. Whereas deletion of IFNAR1 is not sufficient to convert neutrophils and monocytes to MDSC, genetic stabilization of IFNAR1 in tumor bearing mice undermines suppressive activity of MDSC and has potent antitumor effect. Stabilizing IFNAR1 using inhibitor of p38 combined with the interferon induction therapy elicits a robust anti-tumor effect. Thus, negative regulatory mechanisms of MDSC function can be exploited therapeutically.


Assuntos
Interferon Tipo I/metabolismo , Células Supressoras Mieloides/imunologia , Neoplasias/metabolismo , Receptor de Interferon alfa e beta/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Medula Óssea , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Monócitos/imunologia , Neutrófilos/imunologia , Receptor de Interferon alfa e beta/genética , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Sci Adv ; 7(3)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523892

RESUMO

Monocytes and monocyte-derived macrophages originate through a multistep differentiation process. First, hematopoietic stem cells generate lineage-restricted progenitors that eventually develop into peripheral, postmitotic monocytes. Second, blood-circulating monocytes undergo differentiation into macrophages, which are specialized phagocytic cells capable of tissue infiltration. While monocytes mediate some level of inflammation and cell toxicity, macrophages boast the widest set of defense mechanisms against pathogens and elicit robust inflammatory responses. Here, we analyze the molecular determinants of monocytic and macrophagic commitment by profiling the EGR1 transcription factor. EGR1 is essential for monopoiesis and binds enhancers that regulate monocytic developmental genes such as CSF1R However, differentiating macrophages present a very different EGR1 binding pattern. We identify novel binding sites of EGR1 at a large set of inflammatory enhancers, even in the absence of its binding motif. We show that EGR1 repressive activity results in suppression of inflammatory genes and is mediated by the NuRD corepressor complex.


Assuntos
Macrófagos , Monócitos , Diferenciação Celular/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células-Tronco Hematopoéticas , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo
7.
Nat Rev Immunol ; 21(8): 485-498, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33526920

RESUMO

Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes with potent immunosuppressive activity. They are implicated in the regulation of immune responses in many pathological conditions and are closely associated with poor clinical outcomes in cancer. Recent studies have indicated key distinctions between MDSCs and classical neutrophils and monocytes, and, in this Review, we discuss new data on the major genomic and metabolic characteristics of MDSCs. We explain how these characteristics shape MDSC function and could facilitate therapeutic targeting of these cells, particularly in cancer and in autoimmune diseases. Additionally, we briefly discuss emerging data on MDSC involvement in pregnancy, neonatal biology and COVID-19.


Assuntos
Citocinas/imunologia , Monócitos/imunologia , Células Mieloides/imunologia , Células Supressoras Mieloides/imunologia , Neutrófilos/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , COVID-19/imunologia , COVID-19/prevenção & controle , COVID-19/virologia , Citocinas/metabolismo , Humanos , Monócitos/metabolismo , Células Mieloides/metabolismo , Células Supressoras Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neutrófilos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia
8.
J Exp Med ; 218(4)2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33566112

RESUMO

In this study, using single-cell RNA-seq, cell mass spectrometry, flow cytometry, and functional analysis, we characterized the heterogeneity of polymorphonuclear neutrophils (PMNs) in cancer. We describe three populations of PMNs in tumor-bearing mice: classical PMNs, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and activated PMN-MDSCs with potent immune suppressive activity. In spleens of mice, PMN-MDSCs gradually replaced PMNs during tumor progression. Activated PMN-MDSCs were found only in tumors, where they were present at the very early stages of the disease. These populations of PMNs in mice could be separated based on the expression of CD14. In peripheral blood of cancer patients, we identified two distinct populations of PMNs with characteristics of classical PMNs and PMN-MDSCs. The gene signature of tumor PMN-MDSCs was similar to that in mouse activated PMN-MDSCs and was closely associated with negative clinical outcome in cancer patients. Thus, we provide evidence that PMN-MDSCs are a distinct population of PMNs with unique features and potential for selective targeting opportunities.


Assuntos
Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Neoplasias Pulmonares/imunologia , Linfoma/imunologia , Neutrófilos/classificação , Neutrófilos/imunologia , Animais , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Células não Pequenas/sangue , Estudos de Casos e Controles , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Neoplasias Pulmonares/sangue , Linfoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , RNA-Seq , Análise de Célula Única , Transcriptoma
9.
Cells ; 10(1)2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374253

RESUMO

Glioblastoma (GBM) is the most aggressive, malignant primary brain tumor in adults. GBM is notoriously resistant to immunotherapy mainly due to its unique immune microenvironment. High dimensional data analysis reveals the extensive heterogeneity of immune components making up the GBM microenvironment. Myeloid cells are the most predominant contributors to the GBM microenvironment; these cells are critical regulators of immune and therapeutic responses to GBM. Here, we will review the most recent advances on the characteristics and functions of different populations of myeloid cells in GBM, including bone marrow-derived macrophages, microglia, myeloid-derived suppressor cells, dendritic cells, and neutrophils. Epigenetic, metabolic, and phenotypic peculiarities of microglia and bone marrow-derived macrophages will also be assessed. The final goal of this review will be to provide new insights into novel therapeutic approaches for specific targeting of myeloid cells to improve the efficacy of current treatments in GBM patients.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Microglia , Células Mieloides , Microambiente Tumoral , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/terapia , Glioblastoma/metabolismo , Glioblastoma/terapia , Humanos , Imunoterapia , Microglia/metabolismo , Microglia/patologia , Células Mieloides/metabolismo , Células Mieloides/patologia
10.
JCI Insight ; 5(15)2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32584791

RESUMO

DCs are a critical component of immune responses in cancer primarily due to their ability to cross-present tumor-associated antigens. Cross-presentation by DCs in cancer is impaired, which may represent one of the obstacles for the success of cancer immunotherapies. Here, we report that polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) blocked cross-presentation by DCs without affecting direct presentation of antigens by these cells. This effect did not require direct cell-cell contact and was associated with transfer of lipids. Neutrophils (PMN) and PMN-MDSC transferred lipid to DCs equally well; however, PMN did not affect DC cross-presentation. PMN-MDSC generate oxidatively truncated lipids previously shown to be involved in impaired cross-presentation by DCs. Accumulation of oxidized lipids in PMN-MDSC was dependent on myeloperoxidase (MPO). MPO-deficient PMN-MDSC did not affect cross-presentation by DCs. Cross-presentation of tumor-associated antigens in vivo by DCs was improved in MDSC-depleted or tumor-bearing MPO-KO mice. Pharmacological inhibition of MPO in combination with checkpoint blockade reduced tumor progression in different tumor models. These data suggest MPO-driven lipid peroxidation in PMN-MDSC as a possible non-cell autonomous mechanism of inhibition of antigen cross-presentation by DCs and propose MPO as potential therapeutic target to enhance the efficacy of current immunotherapies for patients with cancer.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Células Dendríticas/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Neutrófilos/imunologia , Peroxidase/fisiologia , Animais , Apresentação Cruzada/imunologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias/patologia , Células Tumorais Cultivadas , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Exp Med ; 216(9): 2150-2169, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31239386

RESUMO

We have identified a precursor that differentiates into granulocytes in vitro and in vivo yet belongs to the monocytic lineage. We have termed these cells monocyte-like precursors of granulocytes (MLPGs). Under steady state conditions, MLPGs were absent in the spleen and barely detectable in the bone marrow (BM). In contrast, these cells significantly expanded in tumor-bearing mice and differentiated to polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Selective depletion of monocytic cells had no effect on the number of granulocytes in naive mice but decreased the population of PMN-MDSCs in tumor-bearing mice by 50%. The expansion of MLPGs was found to be controlled by the down-regulation of Rb1, but not IRF8, which is known to regulate the expansion of PMN-MDSCs from classic granulocyte precursors. In cancer patients, putative MLPGs were found within the population of CXCR1+CD15-CD14+HLA-DR-/lo monocytic cells. These findings describe a mechanism of abnormal myelopoiesis in cancer and suggest potential new approaches for selective targeting of MDSCs.


Assuntos
Monócitos/patologia , Células Supressoras Mieloides/patologia , Neoplasias/patologia , Neutrófilos/patologia , Adulto , Idoso , Animais , Diferenciação Celular , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Proteínas de Ligação a Retinoblastoma/metabolismo
12.
Nature ; 569(7754): 73-78, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30996346

RESUMO

Polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are pathologically activated neutrophils that are crucial for the regulation of immune responses in cancer. These cells contribute to the failure of cancer therapies and are associated with poor clinical outcomes. Despite recent advances in the understanding of PMN-MDSC biology, the mechanisms responsible for the pathological activation of neutrophils are not well defined, and this limits the selective targeting of these cells. Here we report that mouse and human PMN-MDSCs exclusively upregulate fatty acid transport protein 2 (FATP2). Overexpression of FATP2 in PMN-MDSCs was controlled by granulocyte-macrophage colony-stimulating factor, through the activation of the STAT5 transcription factor. Deletion of FATP2 abrogated the suppressive activity of PMN-MDSCs. The main mechanism of FATP2-mediated suppressive activity involved the uptake of arachidonic acid and the synthesis of prostaglandin E2. The selective pharmacological inhibition of FATP2 abrogated the activity of PMN-MDSCs and substantially delayed tumour progression. In combination with checkpoint inhibitors, FATP2 inhibition blocked tumour progression in mice. Thus, FATP2 mediates the acquisition of immunosuppressive activity by PMN-MDSCs and represents a target to inhibit the functions of PMN-MDSCs selectively and to improve the efficiency of cancer therapy.


Assuntos
Proteínas de Transporte de Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neutrófilos/metabolismo , Idoso , Animais , Ácido Araquidônico/metabolismo , Dinoprostona/metabolismo , Proteínas de Transporte de Ácido Graxo/antagonistas & inibidores , Feminino , Humanos , Metabolismo dos Lipídeos , Lipídeos , Masculino , Camundongos , Pessoa de Meia-Idade , Neutrófilos/patologia , Fator de Transcrição STAT5/metabolismo
13.
Nat Immunol ; 19(2): 108-119, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29348500

RESUMO

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells generated during a large array of pathologic conditions ranging from cancer to obesity. These cells represent a pathologic state of activation of monocytes and relatively immature neutrophils. MDSCs are characterized by a distinct set of genomic and biochemical features, and can, on the basis of recent findings, be distinguished by specific surface molecules. The salient feature of these cells is their ability to inhibit T cell function and thus contribute to the pathogenesis of various diseases. In this Review, we discuss the origin and nature of these cells; their distinctive features; and their biological roles in cancer, infectious diseases, autoimmunity, obesity and pregnancy.


Assuntos
Células Supressoras Mieloides/imunologia , Animais , Humanos
14.
Nat Commun ; 8(1): 2122, 2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29242535

RESUMO

Cross-presentation is a critical function of dendritic cells (DCs) required for induction of antitumor immune responses and success of cancer immunotherapy. It is established that tumor-associated DCs are defective in their ability to cross-present antigens. However, the mechanisms driving these defects are still unknown. We find that impaired cross-presentation in DCs is largely associated with defect in trafficking of peptide-MHC class I (pMHC) complexes to the cell surface. DCs in tumor-bearing hosts accumulate lipid bodies (LB) containing electrophilic oxidatively truncated (ox-tr) lipids. These ox-tr-LB, but not LB present in control DCs, covalently bind to chaperone heat shock protein 70. This interaction prevents the translocation of pMHC to cell surface by causing the accumulation of pMHC inside late endosomes/lysosomes. As a result, tumor-associated DCs are no longer able to stimulate adequate CD8 T cells responses. In conclusion, this study demonstrates a mechanism regulating cross-presentation in cancer and suggests potential therapeutic avenues.


Assuntos
Antígenos/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Gotículas Lipídicas/imunologia , Lipídeos/imunologia , Neoplasias/imunologia , Animais , Apresentação de Antígeno/imunologia , Linhagem Celular Tumoral , Células Dendríticas/metabolismo , Endossomos/imunologia , Endossomos/metabolismo , Feminino , Proteínas de Choque Térmico HSP70/imunologia , Proteínas de Choque Térmico HSP70/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Gotículas Lipídicas/metabolismo , Lisossomos/imunologia , Lisossomos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica
15.
Curr Opin Immunol ; 45: 43-51, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28192720

RESUMO

Dendritic cells (DCs) with their potent antigen presenting ability are long considered as critical factor in antitumor immunity. Despite high potential in promoting antitumor responses, tumor-associated DCs are largely defective in their functional activity and can contribute to immune suppression in cancer. In recent years existence of immune suppressive regulatory DCs in tumor microenvironment was described. Monocytic myeloid derived suppressor cells (M-MDSCs) can contribute to the pool of tumor associated DCs by differentiating to inflammatory DCs (inf-DCs), which appear to have specific phenotype and is critical component of antitumor response. Here we examine the role of inf-DCs along with other DC subsets in the regulation of immune responses in cancer. These novel data expand our view on the role of DCs in cancer and may provide new targets for immunotherapy.


Assuntos
Células Dendríticas/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias/imunologia , Animais , Células Dendríticas/patologia , Humanos , Imunoterapia , Células Supressoras Mieloides/patologia , Neoplasias/patologia , Neoplasias/terapia
16.
PLoS One ; 11(2): e0149491, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26886938

RESUMO

Prevalent HSV-2 infection increases the risk of HIV acquisition both in men and women even in asymptomatic subjects. Understanding the impact of HSV-2 on the mucosal microenvironment may help to identify determinants of susceptibility to HIV. Vaginal HSV-2 infection increases the frequency of cells highly susceptible to HIV in the vaginal tissue of women and macaques and this correlates with increased susceptibility to vaginal SHIV infection in macaques. However, the effect of rectal HSV-2 infection on HIV acquisition remains understudied. We developed a model of rectal HSV-2 infection in macaques in combination with rectal SIVmac239Δnef (SIVΔnef) vaccination and our results suggest that rectal HSV-2 infection may increase the susceptibility of macaques to rectal SIVmac239 wild-type (wt) infection even in SIVΔnef-infected animals. Rectal SIVΔnef infection/vaccination protected 7 out of 7 SIVΔnef-infected macaques from SIVmac239wt rectal infection (vs 12 out of 16 SIVΔnef-negative macaques), while 1 out of 3 animals co-infected with SIVΔnef and HSV-2 acquired SIVmac239wt infection. HSV-2/SIVmac239wt co-infected animals had increased concentrations of inflammatory factors in their plasma and rectal fluids and a tendency toward higher acute SIVmac239wt plasma viral load. However, they had higher blood CD4 counts and reduced depletion of CCR5+ CD4+ T cells compared to SIVmac239wt-only infected animals. Thus, rectal HSV-2 infection generates a pro-inflammatory environment that may increase susceptibility to rectal SIV infection and may impact immunological and virological parameters during acute SIV infection. Studies with larger number of animals are needed to confirm these findings.


Assuntos
Produtos do Gene nef/metabolismo , Herpesvirus Humano 2/fisiologia , Reto/virologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/fisiologia , Vacinação , Animais , Contagem de Linfócito CD4 , Coinfecção/sangue , Coinfecção/imunologia , Coinfecção/virologia , Citocinas/metabolismo , Humanos , Inflamação/patologia , Linfonodos/patologia , Macaca mulatta , Masculino , Fenótipo , Síndrome de Imunodeficiência Adquirida dos Símios/sangue , Carga Viral/imunologia
17.
J Immunol ; 194(5): 2415-23, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25624458

RESUMO

The tissue microenvironment shapes the characteristics and functions of dendritic cells (DCs), which are important players in HIV infection and dissemination. Notably, DCs in the gut have the daunting task of orchestrating the balance between immune response and tolerance. They produce retinoic acid (RA), which imprints a gut-homing phenotype and influences surrounding DCs. To investigate how the gut microenvironment impacts the ability of DCs to drive HIV infection, we conditioned human immature monocyte-derived DCs (moDCs) with RA (RA-DCs), before pulsing them with HIV and mixing them with autologous T cells. RA-DCs showed a semimature, mucosal-like phenotype and released higher amounts of TGF-ß1 and CCL2. Using flow cytometry, Western blot, and microscopy, we determined that moDCs express the cell adhesion molecule mucosal vascular addressin cell adhesion molecule-1 (MAdCAM-1) and that RA increases its expression. MAdCAM-1 was also detected on a small population of DCs in rhesus macaque (Macaca mulata) mesenteric lymph node. RA-DCs formed more DC-T cell conjugates and promoted significantly higher HIV replication in DC-T cell mixtures compared with moDCs. This correlated with the increase in MAdCAM-1 expression. Blocking MAdCAM-1 partially inhibited the enhanced HIV replication. In summary, RA influences DC phenotype, increasing their ability to exacerbate HIV infection. We describe a previously unknown mechanism that may contribute to rapid HIV spread in the gut, a major site of HIV replication after mucosal exposure.


Assuntos
Células Dendríticas/efeitos dos fármacos , Infecções por HIV/imunologia , HIV-1/imunologia , Mucosa Intestinal/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Moléculas de Adesão Celular , Quimiocina CCL2/biossíntese , Quimiocina CCL2/metabolismo , Técnicas de Cocultura , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/virologia , Feminino , Expressão Gênica , Infecções por HIV/genética , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Imunoglobulinas/genética , Imunoglobulinas/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Linfonodos/imunologia , Linfonodos/patologia , Linfonodos/virologia , Macaca mulatta , Mucoproteínas/genética , Mucoproteínas/imunologia , Fenótipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Linfócitos T/virologia , Fator de Crescimento Transformador beta1/biossíntese , Fator de Crescimento Transformador beta1/metabolismo , Tretinoína/imunologia , Replicação Viral
18.
J Immunol ; 192(6): 2920-31, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24554775

RESUMO

Cross-presentation is one of the main features of dendritic cells (DCs), which is critically important for the development of spontaneous and therapy-inducible antitumor immune responses. Patients, at early stages of cancer, have normal presence of DCs. However, the difficulties in the development of antitumor responses in patients with low tumor burden raised the question of the mechanisms of DC dysfunction. In this study, we found that, in differentiated DCs, tumor-derived factors blocked the cross-presentation of exogenous Ags without inhibiting the Ag presentation of endogenous protein or peptides. This effect was caused by intracellular accumulation of different types of oxidized neutral lipids: triglycerides, cholesterol esters, and fatty acids. In contrast, the accumulation of nonoxidized lipids did not affect cross-presentation. Oxidized lipids blocked cross-presentation by reducing the expression of peptide-MHC class I complexes on the cell surface. Thus, this study suggests the novel role of oxidized lipids in the regulation of cross-presentation.


Assuntos
Apresentação de Antígeno/imunologia , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Lipídeos/imunologia , Neoplasias/imunologia , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Interferon gama/farmacologia , Lipídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Confocal , Neoplasias/metabolismo , Neoplasias/patologia , Ovalbumina/imunologia , Oxirredução , Fragmentos de Peptídeos/imunologia
19.
J Acquir Immune Defic Syndr ; 64(4): 325-31, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23797688

RESUMO

BACKGROUND: Integrin α4ß7(high) (α4ß7(high)) mediates the homing of CD4⁺ T cells to gut-associated lymphoid tissues, which constitute a highly favorable environment for HIV expansion and dissemination. HIV and simian immunodeficiency virus (SIV) envelope proteins bind to and signal through α4ß7(high) and during acute infection SIV preferentially infects α4ß7(high) CD4⁺ T cells. We postulated that the availability of these cells at the time of challenge could influence mucosal SIV transmission and acute viral load (VL). METHODS: We challenged 17 rhesus macaques with 3000 TCID50 of SIVmac239 rectally and followed the subsets of α4ß7(high) T cells and dendritic cells (DCs) by flow cytometry in blood and tissues, before and after challenge. RESULTS: We found that the frequency of memory CD4⁺ T cells that expressed high levels of α4ß7(high) (α4ß7(high) memory CD4⁺ T cells) in blood before challenge correlated strongly with susceptibility to infection and acute VL. Notably, not only at the time of challenge but also their frequency 3 weeks before challenge correlated with infection. This association extended to the rectal tissue as we observed a strong direct correlation between the frequency of α4ß7(high) memory CD4⁺ T cells in blood and rectum before and after challenge. The frequency of α4ß7 myeloid DCs and α4ß7(high) CD80⁺ DCs also correlated with infection and acute VL, whereas blood CCR5⁺ and CD69⁺ CD4⁺ T cells could not be associated with infection. CONCLUSIONS: Our results suggest that animals with higher frequency of α4ß7(high) CD4⁺ T cells in circulation and in rectal tissue could be more susceptible to SIV rectal transmission.


Assuntos
Linfócitos T CD4-Positivos/classificação , Linfócitos T CD4-Positivos/fisiologia , Integrinas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia , Animais , Suscetibilidade a Doenças , Citometria de Fluxo , Memória Imunológica/fisiologia , Macaca mulatta , Masculino , Reto
20.
J Mol Med (Berl) ; 89(12): 1231-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21845448

RESUMO

Dendritic cell (DC)-based immunotherapy is an attractive approach to induce long lasting antitumor effector cells aiming to control cancer progression. DC targeting is a critical step in the design of DC vaccines in order to optimize delivery and processing of the antigen, and several receptors have been characterized for this purpose. In this study, we employed the FcγRs to target DCs both in vitro and in vivo. We designed a recombinant molecule (HER2-Fc) composed of the immunogenic sequence of the human tumor-associated antigen HER2 (aa 364-391) and the Fc domain of a human IgG(1). In a mouse model, HER2-Fc cDNA vaccination activated significant T cell-mediated immune responses towards HER2 peptide epitopes as detected by IFN-γ ELIspot and induced longer tumor latency as compared to Ctrl-Fc-vaccinated control mice. Human in vitro studies indicated that the recombinant HER2-Fc immunogen efficiently targeted human DCs through the FcγRs resulting in protein cross-processing and in the activation of autologous HER2-specific CD8(+) T cells from breast cancer patients.


Assuntos
Neoplasias da Mama/terapia , Vacinas Anticâncer , Células Dendríticas/imunologia , Imunoterapia , Receptor ErbB-2/imunologia , Receptores de IgG/imunologia , Animais , Neoplasias da Mama/imunologia , Linfócitos T CD8-Positivos/imunologia , Células CHO , Linhagem Celular Tumoral , Cricetinae , Feminino , Humanos , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA